Introduksjon
Ductile Iron Casting representerer et betydelig fremgang innen støpejernsteknologi, Kombinere kostnadseffektiviteten og støpbarheten til tradisjonell grå jern med mekaniske egenskaper som konkurrerer med noen stål.
Kjent for sin nodulære eller sfæroidale grafittstruktur, duktilt jern gir økt duktilitet, seighet, og utmattelsesmotstand, gjør det til et essensielt materiale i moderne ingeniørfag.
Det er mye brukt på tvers av bil, vannverk, tungt maskiner, og energisektorer, ofte erstatter grått jern og stål på grunn av sin overlegne ytelse og økonomiske fordeler.
De siste tiårene, Skiftet fra grått jern til duktilt jern har blitt drevet av etterspørselen etter lighter, sterkere, og mer pålitelige komponenter, Spesielt i bransjer der sikkerhet og holdbarhet er viktig.
Denne artikkelen gir en Omfattende og profesjonell analyse av duktil jernstøping, dekker sammensetningen, Egenskaper, produksjonsprosesser, applikasjoner, og fremtidige trender.
1. What is Ductile Iron?
Duktilt jern, Også kjent som nodulær støpejern eller sfæroidal grafittjern (Sg jern), er en type støpejern som viser Overlegen duktilitet og seighet Sammenlignet med tradisjonelt grått støpejern.
Den viktigste forskjellen ligger i Grafitt morfologi: Mens grått jern inneholder flakeformet grafitt, duktilt jernfunksjoner Grafittknuter (sfæriske eller sfæroidale partikler) som forbedrer dens mekaniske egenskaper betydelig.

Historisk bakgrunn
Duktilt jern ble først oppdaget i 1943 av Keith Millis, som demonstrerte at det å legge til en liten mengde magnesium (eller cerium) For å smeltet jern fikk grafitten til å danne seg i sfæriske knuter i stedet for flak.
Denne mikrostrukturelle transformasjonen resulterte i et materiale med Høy strekkfasthet og forlengelse, gjør det til et overlegen alternativ til grått jern for krevende applikasjoner.
Key Characteristics and Advantages
- Høyere duktilitet og seighet: Duktilt jerns nodulære grafittstruktur minimerer stresskonsentrasjon, fører til bedre påvirkningsmotstand og forlengelse (opp til 18% for visse karakterer).
- Overlegen utmattelsesmotstand: Fraværet av grafittflak reduserer sprekkinitiering, øke utmattelsesstyrken.
- Allsidighet: Ved å endre matrisen mikrostruktur (ferritisk, Pearlitisk, eller Austempered), Duktile jernegenskaper kan skreddersys for spesifikke applikasjoner.
2. Chemical Composition of Ductile Iron
The chemical composition of ductile iron is carefully controlled to achieve its unique combination of styrke, duktilitet, og maskinbarhet.
The addition of small amounts of magnesium (Mg) or other nodulizing elements (such as cerium) during the melting process transforms the graphite structure from flakes (as in gray iron) til sfæroidale knuter, which significantly improve mechanical performance.
Standard Chemical Composition of Ductile Iron Grades (ASTM A536)
| Element | Symbol | Typisk område (vekt%) | Rolle i legering |
| Karbon | C | 3.2 - 3.6 | Graphite formation, styrke, og støpbarhet |
| Silisium | Og | 2.2 - 2.8 | Promotes ferrite and improves corrosion resistance |
| Magnesium | Mg | 0.03 - 0.05 | Nodule formation and microstructure control |
| Mangan | Mn | ≤ 0.3 | Enhances strength but must be controlled |
| Svovel | S | ≤ 0.01 | Must be minimized to ensure proper nodularization |
| Fosfor | P | ≤ 0.05 | Kontrollert for å unngå omfattende |
| Stryke | Fe | Balansere | Matrix material |
3. Ductile Iron Casting Methods
Ductile iron can be cast using a range of methods, each offering unique advantages for specific part geometries, surface quality requirements, Produksjonsvolum, and mechanical property expectations.
Selecting the right method is crucial for balancing koste, ytelse, og produksjonseffektivitet.
Sand Casting Ductile Iron
- Oversikt:
Sand casting is the most widely adopted method for duktilt jern på grunn av dets allsidighet og evne til å håndtere både små og veldig store komponenter (veier opp til flere tonn).
Prosessen bruker en gjenbrukbart mønster for å danne et formhulrom i sand, som smeltet jern helles.
Moldmaterialet er ofte grønn sand (Silica sand bundet med leire), Selv om kjemisk bundet sand også brukes til bedre overflatebehandling og styrke. - Fordeler:
-
- Ideell for komplekse geometrier og store komponenter.
- Lave verktøykostnader sammenlignet med permanente muggprosesser.
- Passer for både prototyping og middels til stor produksjonsløp.
- Begrensninger:
-
- Nedre overflatebehandling og dimensjonal nøyaktighet enn presisjonsmetoder.
- Krever postmaskinering for strammere toleranser.
Ductile Iron Shell Mold Casting
- Oversikt:
Shell Mold støpe er en Presisjonsvariant av sandstøping som bruker et tynt skall av harpiksbelagt sand å danne formen, resulting in better surface finish and tighter dimensional control.
It is often preferred for medium-sized ductile iron parts with complex geometries, such as engine components and gear housings. - Fordeler:
-
- Overlegen overflatebehandling (Ra ~3.2 µm).
- Better repeatability and accuracy compared to green sand.
- Suitable for medium-to-high production volumes.
- Begrensninger:
-
- Higher mold preparation cost.
- Limited for extremely large castings.
Ductile Iron Investment Casting (Lost-wax casting)
- Oversikt:
Investeringsstøping, also called Lost-wax casting, involves creating a wax pattern that is coated with refractory material to form a ceramic shell.
Once the wax is melted away, molten ductile iron is poured into the mold. This method is highly valued for precision parts requiring near-net-shape geometry and minimal machining.Duktilt jerninvestering støpeprodukt - Fordeler:
-
- Utmerket overflatefinish (Ra ~ 1,6-3,2 um).
- Capable of producing intricate designs with thin walls and complex features.
- Reduces material waste and post-processing.
- Begrensninger:
-
- High production cost and labor-intensive process.
- Best suited for smaller components (vanligvis <50 kg).
Centrifugal Casting Ductile Iron
- Oversikt:
Centrifugal casting is widely used for cylindrical or tubular ductile iron parts, such as pipes and bushings.
The process involves pouring molten iron into a spinning mold, where centrifugal force distributes the metal along the mold walls, producing dense and defect-free castings. - Fordeler:
-
- Produces high-density components with minimal porosity.
- Fine-grained microstructure improves mechanical strength.
- Ideal for hollow sections and pressure-rated components.
- Begrensninger:
-
- Limited to rotationally symmetrical shapes.
- Requires expensive, specialized machinery.
Duktil jern mistet skumstøping (LFC)
- Oversikt:
Lost foam casting is a modern innovation that uses a skum (polystyrene) mønster which vaporizes when molten metal is poured into the mold.
Det er egnet for complex parts with no need for draft angles and can minimize machining. - Fordeler:
-
- Enables highly complex, Nærnettformede design.
- Eliminates the need for cores and parting lines.
- Lower assembly requirements.
- Begrensninger:
-
- High cost of foam patterns.
- Requires careful mold filling to avoid defects.
Ductile Iron Continuous Casting (for Ductile Iron Bars)
- Oversikt:
Continuous casting is used to produce solid bars, Billets, og profiler with consistent mechanical properties and reduced porosity.
Molten iron is poured into a cooled mold that moves continuously, forming long lengths of material. - Fordeler:
-
- High productivity and uniform quality.
- Reduces machining and material waste.
- Cost-effective for raw stock production.
- Begrensninger:
-
- Not suitable for intricate shapes or complex parts.
4. Ductile Iron Casting Process
The ductile iron casting process is a carefully controlled sequence of smelting, nodularization, inoculation, støping, and post-treatment to ensure the desired nodular graphite microstructure og mekaniske egenskaper.
I motsetning til grått jern, achieving the spheroidal graphite structure in ductile iron requires precise magnesium or cerium treatment and close monitoring of Kjemisk sammensetning, kjølehastighet, and pouring conditions.

4.1 Smelting og legering
- Smelting: Induction furnaces (1400–1500°C) melt pig iron + 60–80% recycled ductile iron scrap (beholder 95% of virgin properties).
- Alloy Control: Spectrometric analysis ensures composition stays within ASTM ranges (F.eks., C = 3.4 ±0.1%, Si = 2.5 ±0.1%).
4.2 Nodularization
- Behandle: Magnesium (as Fe-Mg alloy, 6–8% Mg) is added to molten iron at 1400°C. This “treatment” breaks flake graphite into spheres, with 0.03–0.05% residual Mg required for full effect.
- Kritisk kontroll: Sulfur must be <0.03% (Mg:S ratio ≥1.5:1) to avoid nodule degeneration.
4.3 Inoculation
- Hensikt: Refines graphite nodules (5–20 nodules/mm²) and prevents “chill” (brittle martensite formation).
- Behandle: Ferrosilicon (75% Og) added post-nodularization at 0.2–0.5% by weight. Inoculants like calcium-silicon further enhance nodule uniformity.
4.4 Mold Design and Pouring
- Muggmaterialer: Grønn sand (lave kostnader, resirkulerbar) for general parts; harpiksbundet sand (better tolerance) for precision components.
- Gating/Risering: Gating designet for å minimere turbulens (hastighet <1.5 m/s) to avoid oxide inclusions. Stigerør (10–15% av delvolumet) feed shrinkage, critical for thick sections (>25 mm).
- Hellingstemperatur: 1300–1350°C (lower than gray iron to avoid Mg burnout).
4.5 Cooling and Shakeout
- Kjølehastighet: 5–20°C/min (sandformer) promotes uniform nodule formation. Faster cooling (20–30°C/min) in metal molds increases pearlite content, boosting strength.
- Shakeout: Mold is vibrated to release the casting; kjerner (for internal features) are removed via water jetting.
4.6 Post-casting-operasjoner
- Rengjøring: Shot blasting removes residual sand, achieving Ra 12.5–25 μm (Sandstøping) or Ra 1.6–6.3 μm (Investeringsstøping).
- Maskinering: CNC snur/milling achieves tolerances ±0.01 mm for critical features (F.eks., bearing bores).
Ductile iron’s machinability is 80% that of gray iron (tool wear rates 10–15% higher). - Varmebehandling: Enhances mechanical properties (F.eks., annealing for ductility, austempering for high strength).
- Belegg: Paint or galvanizing (for corrosion resistance in outdoor applications).
5. Heat Treatment of Ductile Iron Casting
Heat treatment plays a crucial role in enhancing the mechanical properties and performance of ductile iron castings.
By carefully controlling the thermal cycles, manufacturers can tailor the microstructure to achieve the desired balance of strength, duktilitet, seighet, og bruk motstand.

Annealing
- Hensikt:
Annealing relieves internal stresses caused by casting and machining, Forbedrer duktilitet, and enhances machinability. - Behandle:
-
- Typically performed at temperatures between 850°C and 950°C.
- Soaking time depends on casting thickness, vanligvis 1 til 4 timer.
- Slow cooling inside the furnace or in still air to avoid thermal shock.
Normalisering
- Hensikt:
Normalizing is applied to improve wear resistance, Dimensjonell stabilitet, og styrke. - Behandle:
-
- Heating the casting to 900°C–950°C etterfulgt av luftkjøling.
- Cooling rate faster than annealing but slower than quenching.
Austempering (Austempered Ductile Iron – ADI)
- Hensikt:
Austempering transforms ductile iron into Austempered duktilt jern (Adi), a high-strength, slitasje, and fatigue-resistant material. - Behandle:
-
- Heating the casting to the austenitizing temperature (850°C–900°C).
- Rapid quenching into a molten salt bath maintained at 250°C–400°C for a specified time (1–3 hours).
- Cooling to room temperature.
6. Mechanical Properties of Ductile Iron Castings
| Eiendom | Karakter 60-40-18 | Karakter 65-45-12 | Karakter 80-55-06 | Austempered duktilt jern (Adi) |
| Strekkfasthet (MPA) | ≥ 415 | ≥ 450 | ≥ 550 | 900 - 1500 |
| Avkastningsstyrke (MPA) | ≥ 275 | ≥ 310 | ≥ 415 | 700 - 1000 |
| Forlengelse (%) | ≥ 18 | ≥ 12 | ≥ 6 | 6 - 10 |
| Hardhet (Hb) | 180 - 210 | 190 - 230 | 220 - 270 | 300 - 400 |
| Påvirke seighet (J/cm²) | 5 - 10 | 7 - 12 | 10 - 15 | 10 - 20 |
7. Advantages of Ductile Iron Casting
Ductile iron casting offers a unique combination of mechanical strength, seighet, Kostnadseffektivitet, og designfleksibilitet, making it one of the most widely used cast iron materials in various industries.

Superior Mechanical Strength and Toughness
- Ductile iron achieves tensile strengths between 415–690 MPa (60–100 ksi), with high yield strength and excellent fatigue resistance.
- De nodular graphite microstructure prevents crack propagation, offering higher impact toughness compared to gray cast iron, which is prone to brittleness.
Enhanced Ductility and Elongation
- Standard grades like ASTM A536 60-40-18 exhibit elongation values up to 18%, far exceeding the <2% elongation seen in gray iron.
- This ductility allows components to absorb shock loads without failure, making it suitable for automotive and heavy machinery parts.
Excellent Vibration Damping
- Ductile iron retains the superior vibration damping properties of cast iron, which is beneficial for components such as Maskinverktøybaser, Pumper, and compressor housings, reducing noise and vibration.
Cost-Effectiveness vs. Stålstøping
- Sammenlignet med stål, ductile iron is 30–40% less expensive due to lower melting energy requirements and simpler casting processes.
- It provides similar strength-to-weight performance as steel while offering better machinability, reducing overall manufacturing costs.
Kompleks formstøping
- Ductile iron’s excellent fluidity enables the production of intricate and thin-walled castings with near-net shapes, minimizing machining and material waste.
- It is well-suited for components like motorblokker, girhus, og ventiler that require complex geometries.
Allsidige varmebehandlingsalternativer
- Properties can be tailored through heat treatment (Annealing, Normalisering, or austempering), enabling a broad range of mechanical characteristics from Høy duktilitet til extreme wear resistance (as in Austempered Ductile Iron – ADI).
Slitasje og utmattelsesmotstand
- Med proper alloying and heat treatment, ductile iron can achieve high hardness (opp til 400 HB in ADI) and superior fatigue strength, ideal for components subjected to repeated loading or abrasive conditions.
8. Begrensninger av duktil jernstøping
- Lavere korrosjonsmotstand: Requires coatings or galvanizing in aggressive environments.
- Shrinkage and Porosity Risks: Demands precise control during casting.
- Performance Limitations at Low Temperatures: Brittle behavior in cryogenic conditions.
9. Store anvendelser av duktile jernstøp
Ductile iron castings are used extensively across numerous industries due to their excellent strength, duktilitet, Bruk motstand, Vibrasjonsdemping, og kostnadseffektivitet.

Bilindustri
Ductile iron is a preferred material in automotive manufacturing for its ability to withstand dynamic loads, motstå slitasje, and reduce production costs through near-net-shape casting.
- Motorkomponenter: veivaksler, kamaksler, Sylinderhoder, timing gears.
- Opphengsdeler: Kontrollarmer, Styringsknoker, hjulnav.
- Transmission and drivetrain: differential carriers, girhus, lagerhetter.
Vann- og avløpsinfrastruktur
Dens korrosjonsmotstand, maskinbarhet, and long service life make ductile iron ideal for water-related applications.
- Pipes and fittings: ductile iron pipe (DIP) is widely used for potable water, sewage, and storm drainage systems.
- Valves and hydrants: portventiler, Sommerfuglventiler, fire hydrants.
Tungt maskiner og industrielt utstyr
High strength-to-weight ratio and vibration damping make ductile iron suitable for components in machinery and equipment.
- Pumpehus, kompressordeler, bærende hus.
- Machine tool bases: dreiebenker, milling machines, grinders.
- Landbruksutstyr: girkasser, rammer, hus.
Energi og kraftproduksjon
Ductile iron supports the growing demand for durable, heavy-duty components in wind, hydro, and conventional energy systems.
- Vindturbinknutepunkter, bremsekomponenter, and gear reducers.
- Hydraulic and steam turbines: casing and structural castings.
- Generator and motor housings.
Jernbane og transport
Used in structural and mechanical parts for its toughness and resistance to cyclic loading.
- Railway wheels, brake shoes, and couplings.
- Track components: anchors, plater, festemidler.
Bygging og infrastruktur
The material’s durability and low maintenance requirements make it a standard in public works and building hardware.
- Mannhullsdeksler, drainage grates, street lighting bases.
- Strukturelle støping: kolonner, parentes, Arkitektoniske komponenter.
Gruvedrift og jordbruksutstyr
Ductile iron is used in harsh environments due to its wear and impact resistance.
- Track shoes, tannhjul, gjennomføringer, and housing components.
- Crushing and screening equipment parts.
10. Duktilt jern vs. Andre støpematerialer
Ductile iron stands out among cast materials due to its combination of strength, duktilitet, Bruk motstand, og kostnadseffektivitet.
| Eiendom / Materiale | Duktilt jern (ASTM A536) | Grått støpejern | Karbonstål (Aisi 1020) | Aluminiumslegering (A356) |
| Strekkfasthet (MPA) | 420–700 | 150–300 | 400–550 | 200–300 |
| Avkastningsstyrke (MPA) | 240–500 | N/a (sprø brudd) | 250–350 | 130–200 |
| Forlengelse (%) | 2–18 | <1 | 15–25 | 5–12 |
| Tetthet (g/cm³) | 7.1 | 7.2 | 7.8 | 2.7 |
| Dempingskapasitet | Glimrende | Glimrende | Moderat | Lav |
| Maskinbarhet | Veldig bra | Glimrende | Moderat | Glimrende |
| Korrosjonsmotstand | Moderat (Krever belegg) | Moderat (porous oxides) | Lav (Krever belegg) | Høy (naturlig oksidlag) |
| Koste (slektning) | Lav | Lav | Høyere | Høyere |
| Casting Complexity | Høy | Høy | Moderat | Moderat |
11. Konklusjon
Ductile iron casting offers an exceptional balance of styrke, duktilitet, kostnadseffektivitet, og støpbarhet, making it a preferred material across industries such as automotive, vannverk, og tunge maskiner.
Its ability to bridge the performance gap between gray iron and steel has cemented its status as a versatile engineering material.
Ser fremover, the development of Adi (Austempered duktilt jern) and sustainable foundry practices will continue to enhance the performance and eco-friendliness of ductile iron components.
Langhe tilbyr duktile jernstøpingstjenester
På Langhe, we specialize in delivering high-performance ductile iron castings using a full spectrum of advanced casting technologies.
Whether your project demands the flexibility of Grønn sandstøping, the precision of shell mold eller Investeringsstøping, the strength and consistency of metal mold (permanent form) støping, or the density and purity provided by sentrifugal og Mistet skumstøping,
Langhe has the engineering expertise and production capacity to meet your exact specifications.
Our facility is equipped to handle everything from prototype development to high-volume manufacturing, supported by rigorous quality control, material traceability, and metallurgical analysis.
From automotive and energy sectors to infrastructure and heavy machinery, Langhe delivers custom casting solutions that combine metallurgical excellence, dimensjonsnøyaktighet, og langsiktig ytelse.
Vanlige spørsmål
Hvordan er duktilt jern forskjellig fra grått jern?
Ductile iron contains spherical graphite nodules (via magnesium addition), enabling 10–20% elongation and high impact toughness. Gray iron has flake graphite, making it brittle (<1% forlengelse).
Hva er Adi, Og når brukes det?
Austempered duktilt jern (Adi) is heat-treated to form a bainitic matrix, offering 100–150 ksi tensile strength. Used in high-load applications like wind turbine hubs and racing components.
Hvorfor er magnesium kritisk i duktilt jern?
Magnesium transforms flake graphite into spheres, eliminating stress concentration and enabling ductility. Residual magnesium (0.03–0,05%) ensures the effect.
Hvordan sammenligner duktilt jern med stål i kostnad?
Ductile iron is 30–50% cheaper than steel castings for equivalent strength, with better castability reducing production time by 20–30%.
Hva er den maksimale servicetemperaturen for duktilt jern?
Det utfører pålitelig opp til 400 ° C. Over 500 ° C., strength drops by 30% due to pearlite decomposition.



