1. Introduksjon
Støping vs smi are two fundamental metal-shaping routes.
Støping utmerker seg med å produsere komplekse former, internal cavities and large parts with relatively low material waste and low per-part tooling cost for moderate geometries.
Smi produces parts with superior mechanical properties, Forbedret utmattelsesmotstand og bedre kornstrøm, men krever vanligvis tyngre verktøy og mer maskinering for kompleks geometri.
Det riktige valget avhenger av applikasjonens mekaniske krav, Geometri -kompleksitet, volum, Kostnadsmål og regulatoriske begrensninger.
2. Hva er casting?
Støping er en produksjonsprosess der smeltet metall helles i et moldhulrom formet som ønsket komponent.
Når metallet avkjøles og stivner, Formen fjernes for å avsløre støpt del.
Denne prosessen er en av de eldste metodene for metallforming, Dateres tusenvis av år tilbake, og er fremdeles mye brukt på grunn av sin allsidighet i å produsere både enkle og svært komplekse deler.

Prosessoversikt
- Mønsterskaping - En kopi av delen (mønster) er laget av voks, tre, plast, eller metall.
- Moldforberedelse - En form opprettes ved hjelp av sand, keramikk, eller metall, Avhengig av støpemetoden.
- Smelting & Helling - Metalllegeringer er smeltet (Vanligvis ved 600–1.600 ° C avhengig av legering) og helles i formen.
- Størkning & Kjøling – Controlled cooling allows the metal to take the shape of the mold cavity.
- Shakeout & Rengjøring – The mold is broken or opened, and excess material (porter, stigerør) fjernes.
- Etterbehandling & Undersøkelse – Heat treatment, maskinering, and surface finishing are applied as required.
Variants of Casting
- Sandstøping – Cost-effective, suitable for large and heavy parts; dimensional tolerance typically ±0.5–2.0 mm.
- Investering Casting (Lost-wax) – Produces highly detailed, near-net-shape parts with excellent surface finish (Ra ≈ 1.6–3.2 µm).
- Die Casting – High-pressure injection of molten non-ferrous alloys (Al, Zn, Mg) into permanent molds; excellent for high-volume production.
- Sentrifugalstøping – Used for cylindrical parts like pipes, with high density and minimal defects.
- Kontinuerlig støping – Industrial process for producing billets, plater, and rods directly from molten metal.
Viktige fordeler
- Ability to produce komplekse geometrier, including internal cavities and thin-walled sections.
- Wide range of Legeringsfleksibilitet (stål, strykejern, aluminium, kopper, nikkel, Titan).
- Nærnettform Kapasiteten reduserer bearbeidingskrav.
- Kostnadseffektiv for store deler og Lav-til-medium volumer.
- Skalerbarhet-Fra prototyper til produksjon med høyt volum (Spesielt med die casting).
Begrensninger
- Støpefeil som som porøsitet, Krympende hulrom, inneslutninger, og varme tårer.
- Mekaniske egenskaper (Strekkfasthet, utmattelsesmotstand) er ofte dårligere enn smidde ekvivalenter på grunn av dendritiske mikrostrukturer og porøsitet.
- Dimensjonal nøyaktighet og overflatebehandling varierer betydelig etter prosess.
- Kjølehastigheter kan forårsake segregering og anisotropi i mekanisk ytelse.
3. Hva er smi?
Smi er en metallbearbeidingsprosess der metall er formet til ønsket geometri gjennom Kompresjonskraft, vanligvis ved hjelp av hammere, presser, eller dør.
I motsetning til støping, der materialet er smeltet og størknet, smiing fungerer metallet i en Solid tilstand, Forbedre kornstrukturen og forbedre mekaniske egenskaper.
Smiing er en av de eldste metallformende metodene, Historisk utført av smed med enkle håndverktøy.
I dag, it is a high-precision industrial process widely used in aerospace, bil, olje & gass, kraftproduksjon, and defense industries.

Prosessoversikt
- Oppvarming (Valgfri) – Metal is heated to a plastic state (for hot forging) or left at room temperature (for cold forging).
- Deformasjon – The metal is compressed or hammered into shape between flat or shaped dies.
- Trimming – Excess material (Flash) fjernes.
- Varmebehandling (om nødvendig) – Normalizing, slukking, and tempering are applied to optimize strength, hardhet, og duktilitet.
- Etterbehandling – Machining, overflatebehandling, and inspection complete the process.
Types of Forging
- Åpen-die smi – Large parts shaped between flat dies; used for shafts, plater, and large blocks.
- Lukket-die (Impression-die) Smi – Metal pressed into shaped cavities for near-net shape parts; widely used in automotive and aerospace.
- Kaldt smiing – Performed at room temperature; excellent dimensional accuracy and surface finish.
- Varm smiing – Performed above recrystallization temperature; allows shaping of large, tough alloys with reduced work hardening.
- Isothermal & Presisjonssjekking – Advanced methods for titanium, nikkel, and aerospace alloys, reducing machining and material waste.
Viktige fordeler
- Overlegne mekaniske egenskaper due to refined grain structure and elimination of internal voids.
- Høy utmattelsesmotstand and impact strength compared to castings.
- Consistent dimensjonsnøyaktighet in precision forging.
- Passer for Kritiske applikasjoner such as aircraft engine parts, automotive crankshafts, trykkfartøy, and nuclear power components.
- Minimal porosity and excellent metallurgical integrity.
Begrensninger
- Høyere kostnader enn casting, spesielt for komplekse former.
- Limited to parts that can be formed by deformation — less suitable for hollow, tynnvegget, or highly intricate geometries.
- Krever specialized tooling and high-tonnage presses for large parts.
- Longer lead times for custom dies.
4. Mikrostruktur & Grain Flow of Casting vs. Smi
One of the most fundamental differences between casting and forging lies in the internal microstructure av materialet.
How the grains are formed, aligned, and distributed during processing directly influences the mechanical strength, seighet, and fatigue resistance of the final component.

Casting Microstructure
- Solidification Process – In casting, molten metal cools and solidifies inside the mold.
Grains nucleate randomly and grow outward, danner Equiaxed eller columnar grains depending on cooling conditions. - Grain Orientation – No preferred orientation (isotropic structure), but often heterogeneous. Grain boundaries may be weak points under stress.
- Feil – Possible porøsitet, Krympende hulrom, inneslutninger, and segregation of alloying elements due to uneven cooling. These reduce fatigue resistance and fracture toughness.
- Egenskaper – Adequate for static loads and complex shapes but generally lower tensile strength and fatigue resistance compared to forged parts.
Forging Microstructure
- Plastic Deformation Process – Forging plastically deforms metal in its solid state, breaking up cast dendritic structures and eliminating porosity.
- Grain Flow Alignment – Forging aligns grains in the direction of applied forces, Produserer a continuous grain flow that follows the shape of the part.
This improves impact strength and fatigue resistance, especially in components like crankshafts and turbine blades. - Defektreduksjon – Forging compacts voids and inclusions, reducing defect size and improving metallurgical integrity.
- Egenskaper – Forged parts show superior mechanical properties, especially in dynamic or cyclic load conditions.
5. Typical Mechanical Property of Casting vs. Smi
| Eiendom (på Rt) | Støping (316 Ss) | Smi (316 Ss) |
| Strekkfasthet (MPA) | 485–515 | 560–620 |
| Avkastningsstyrke (0.2% MPA) | 170–240 | 240–310 |
| Forlengelse (%) | 20–30 | 35–40 |
| Hardhet (Hb) | 135–150 | 150–160 |
| Charpy Impact (J) | 60–80 | 100–120 |
| Utmattelsesstyrke (MPA, 10⁷ sykluser) | ~ 170 | ~ 240 |
6. Design frihet, Toleranser, and Surface Finish
Når du sammenligner casting vs forging, one of the most decisive factors is the balance between Design fleksibilitet, Dimensjonal kontroll, og overflatekvalitet.
Hver prosess har unike styrker og begrensninger, which determine suitability for different applications.

Design frihet
- Støping offers unmatched design flexibility. Complex geometries such as internal cavities, tynne vegger, Gitterstrukturer, and undercuts can be produced directly in a single pour.
Investment casting in particular enables near-net-shape parts, reducing machining by up to 70%.
Components like pump impellers, turbinblad, or intricate brackets are almost exclusively made by casting because forging such shapes would be impossible or economically prohibitive. - Smi, derimot, is constrained to relatively simpler geometries.
Although closed-die forging allows near-net-shape parts, intricate internal passages, fine lattice structures, or sharp undercuts are not achievable.
Forging excels when the part requires solid, continuous geometry without hollow sections, such as shafts, gir, og koble stenger.
Dimensjonale toleranser (ISO 8062 Referanse)
| Behandle | Typical Tolerance Class | Eksempel (100 mm Dimension) | Critical Feature Tolerance (F.eks., Bore Diameter) |
| Sandstøping | CT8 - CT10 | ±0.4 – 0.8 mm | ±0.2 – 0.4 mm |
| Investering Casting | CT4 - CT6 | ±0.05 – 0.2 mm | ±0.03 – 0.08 mm |
| Die Casting (Al/Zn/Mg) | CT5 - CT7 | ± 0,1 - 0.3 mm | ±0.05 – 0.15 mm |
| Åpen-die smi | CT10–CT12 | ±0.8 – 1.5 mm | ±0.4 – 0.8 mm |
| Lukket-die smi | CT7 - CT9 | ±0.2 – 0.6 mm | ± 0,1 - 0.25 mm |
Overflatefinish (Roughness Ra, μm)
| Behandle | Som støpt / As-Forged Ra (μm) | Post-Finishing Ra (μm) |
| Sandstøping | 10 - 20 | 5 - 10 |
| Investering Casting | 1.2 - 5 | 0.8 - 2 |
| Die Casting (Al/Zn/Mg) | 2 - 10 | 1.2 - 5 |
| Åpen-die smi | 10 - 40 | 5 - 10 |
| Lukket-die smi | 5 - 12 | 2.5 - 5 |
7. Secondary Operations and Heat Treatment Impact
Secondary operations and heat treatment play a critical role in optimizing the performance of components produced by casting or forging.
These post-process steps directly influence mechanical properties, dimensjonsnøyaktighet, overflatebehandling, og langsiktig holdbarhet.

Sekundære operasjoner
Maskinering:
- Støping: Cast components often require significant machining to achieve tight tolerances and critical surfaces, especially for holes, tråder, and mating faces.
Investment casting reduces machining requirements due to near-net shape capabilities, whereas sand casting usually requires more extensive post-machining. - Smi: Forged parts generally require minimal machining, mostly for finishing surfaces and precision holes, due to the uniformity and near-final dimensions of closed-die forging.
Overflatebehandling:
- Polering og sliping: Enhance surface quality, reduce roughness, and remove minor surface defects. Investment castings can reach Ra < 1.5 μm after mechanical or electropolishing.
- Skudd sprengning / Perlesprengning: Used to remove scale, Flash, and improve surface uniformity.
- Belegg og plettering: Secondary coatings (F.eks., Passivasjon for rustfritt stål, zinc or nickel plating for corrosion protection) are often applied post-machining.
Forsamling & Fitting:
- Critical for components with multiple parts, such as bushings, pinner, or hinge assemblies. Proper secondary operations ensure proper clearance, interference, and functional alignment.
Varmebehandling
Hensikt:
Varmebehandling is employed to enhance mechanical properties such as strength, hardhet, duktilitet, og bruk motstand. Its effects vary between cast and forged components.
- Støping:
-
- Cast stainless steel and low-alloy steels often undergo løsning annealing, stress lindrer, eller aldersherding to reduce residual stresses, homogenisere mikrostruktur, and improve machinability.
- Care must be taken to avoid partial melting or grain coarsening in thin sections, particularly in investment castings.
- Smi:
-
- Forged components benefit from Normalisering eller quenching and tempering to refine grain structure and maximize mechanical performance.
- Forging inherently produces a denser, mer ensartet mikrostruktur, so heat treatment mainly optimizes hardness and stress relief rather than compensating for defects.
Advanced post-processing
- HOFTE can close internal porosity in castings, bringing properties closer to wrought/forged material at high cost.
- Overflatebehandlinger (Skutt peening, nitriding, forgassering) improve fatigue life and wear resistance.
8. Bransjeapplikasjoner: Matching Method to Need
Casting and forging dominate distinct industrial sectors based on their inherent strengths—geometry complexity, Mekanisk ytelse, Volumkrav, og kostnadsbegrensninger.

Casting Applications
Automotive:
- Motorblokker: Sand casting is widely used for iron engine blocks, accommodating complex water jackets and internal cavities.
- Sylinderhoder: Investment casting enables precision cooling channels and intricate geometries in high-performance engines.
- Aluminum Wheels: Die casting allows high-volume production with excellent surface finish and dimensional consistency.
Luftfart:
- Turbinblad: Investment casting of superalloys like Inconel 718 achieves complex airfoil geometries essential for efficiency and high-temperature resistance.
- Engine Housings: Sand casting of aluminum alloys supports lightweight structures with moderate complexity.
Olje & Gass:
- Pumpehus: Sand casting of cast iron or steel provides robust, cost-effective solutions for fluid handling.
- Ventillegemer: Investment casting in 316L stainless steel achieves tight tolerances and corrosion resistance for critical valves.
Konstruksjon & Infrastruktur:
- Mannhullsdeksler: Sand casting in ductile iron offers high strength and durability.
- Rørbeslag & Komponenter: Die casting aluminum or brass provides lightweight, corrosion-resistant solutions for water and gas networks.
Smi av applikasjoner
Automotive:
- Veivaksler: Closed-die forging in AISI 4140 steel ensures high fatigue resistance and superior grain flow for performance engines.
- Connecting Rods: Forged from 4340 steel for strength and toughness under repeated dynamic loading.
Luftfart:
- Landingsutstyrskomponenter: Closed-die forging in titanium alloys combines high strength-to-weight ratio with excellent fatigue life.
- Engine Shafts: Open-die forging of Inconel 625 produces components resistant to high temperatures and stresses.
Olje & Gass:
- Drill Collars: Open-die forging in AISI 4145H steel ensures high-pressure endurance in harsh downhole environments.
- Valve Stems: Closed-die forging of 316L stainless steel guarantees dimensional accuracy and corrosion resistance.
Tungt maskiner & Industrielt utstyr:
- Gear Blanks: Closed-die forging in AISI 8620 steel achieves high hardness and wear resistance for power transmission.
- Hydraulic Cylinders & Sjakter: Open-die forging in A36 steel ensures toughness and impact resistance for heavy-duty operations.
9. Comprehensive Comparison of Casting vs. Smi
Casting vs forging are foundational manufacturing methods, each with distinct advantages, begrensninger, and ideal use cases.
The table below summarizes the key differences across multiple dimensions, providing an at-a-glance guide for engineers, designere, and production managers:
| Aspekt | Støping | Smi |
| Process Principle | Molten metal poured into a mold and solidified | Metal deformed under compressive force, usually at high temperature |
| Materialutnyttelse | Moderate to high scrap reduction in investment/die casting; some gating/riser waste | Very high material efficiency; minimal scrap when properly planned |
| Design frihet | Excellent for complex geometries, tynne vegger, interne passasjer, underskjæringer | Limited to shapes that can be forged; internal cavities require machining or secondary operations |
| Dimensjonal nøyaktighet | Investeringsstøping: ± 0,05–0,3 mm; Sandstøping: ± 0,5–1,0 mm | Lukket-die smi: ±0.1–0.8 mm; Open-die forging: ±0.5–2.0 mm |
| Overflatefinish | Investment casting Ra 1.6–6.3 μm; sand casting Ra 6.3–25 μm | Closed-die forging Ra 3.2–12.5 μm; open-die forging Ra 6.3–50 μm |
| Mekaniske egenskaper | Moderat styrke; isotropic properties in simple castings; lower fatigue resistance due to porosity | Superior strength and toughness; aligned grain flow improves fatigue and impact resistance |
Heat Treatment Compatibility |
Fully compatible; may relieve internal stresses and improve microstructure | Compatible; forging produces work-hardened regions and directional grain flow that enhance mechanical properties |
| Produksjonsvolum & Koste | Produksjon med høyt volum (die/investment casting) reduces per-part cost; low-volume may be costly | Low-to-medium volume most economical; high-volume can be expensive due to tooling and press costs |
| Typiske applikasjoner | Complex pump housings, Ventillegemer, motorblokker, turbinblad | Veivaksler, koblingsstenger, sjakter, Landingsutstyr, high-stress mechanical components |
| Ledetid | Moderat; mold and pattern development can take weeks | Moderat til lang; forging dies require precise design and machining |
| Fordeler | Komplekse former, Nærnettform, Mindre maskinering, internal passages possible | Høy styrke, Overlegen utmattelsesmotstand, Retningskornstrøm, Utmerket seighet |
| Ulemper | Lower mechanical performance, Potensiell porøsitet, krymping, limited high-stress performance | Limited geometric complexity, higher tooling costs, secondary machining often needed |
10. Konklusjon
Casting vs forging are not competitors but complementary tools—each optimized for specific manufacturing needs:
- Choose Casting If: You need complex geometries, low upfront cost for low volume, or parts made from brittle metals (støpejern).
Investment casting excels at precision, sand casting at cost, and die casting at high-volume non-ferrous parts. - Choose Forging If: You need high strength, utmattelsesmotstand, or tight tolerances for simple-to-moderate shapes. Closed-die forging is ideal for high-volume, Høyspråklige deler; open-die forging for large, low-volume components.
The most successful manufacturing strategies leverage both methods—e.g., a car engine uses cast blocks (kompleksitet) and forged crankshafts (styrke).
By aligning process selection with part function, volum, og kostnad, engineers can optimize performance, reduce TCO, og sikre langsiktig pålitelighet.
Vanlige spørsmål
Can forging produce parts with internal cavities?
No—forging shapes solid metal, so internal cavities require secondary machining (boring, kjedelig), which adds cost and reduces strength.
Støping (especially sand or investment) is the only practical method for parts with internal features (F.eks., engine water jackets).
Which process is more sustainable for steel parts?
Forging is more sustainable for high-volume, Høyspråklige deler: it uses 30–40% less energy than sand casting, produces less waste (10–15% vs. 15–20%), and forged parts have longer service life (reducing replacement cycles).
Sand casting is more sustainable for low-volume, komplekse deler (lower tooling energy).
What is the maximum size for casting vs. smi deler?
- Støping: Sand casting can produce parts up to 100 tonn (F.eks., ship propellers); investment casting is limited to ~50 kg (presisjonsdeler).
- Smi: Open-die forging can produce parts up to 200 tonn (F.eks., power plant shafts); closed-die forging is limited to ~100 kg (deler med høyt volum).
Why are aerospace turbine blades cast instead of forged?
Turbine blades have intricate airfoil geometries and internal cooling channels—impossible to forge.
Investeringsstøping (using single-crystal superalloys like Inconel 718) produces these features with the required precision, while heat treatment optimizes strength for high-temperature service.


