Upravit překlad
podle Transposh - translation plugin for wordpress
Custom Nylon Material Parts

What Is Nylon Material? | Výkon, Aplikace

Nylon material (polyamide) is one of the most widely used families of engineering polymers.

Since its commercial introduction in the 1930s as a textile fiber, nylon chemistry and processing have evolved into a versatile platform used for fibers, filmy, molded engineering components and high-performance composites.

Tento článek poskytuje technickou, multi-perspective analysis of nylon: what it is chemically, its principal grades, key physical and mechanical behavior, processing routes, Výhody a omezení, common applications, sustainability issues, and future directions.

1. What is Nylon?

Nylon material is the trade name commonly used for a family of synthetic polyamide polymery.

Developed in the 1930s as the first fully synthetic fiber, nylon now exists in two broad commercial streams: textile fibers (nylon fiber and filament) a engineering thermoplastics (injection-molded and extruded polyamides).

As a material class, nylons combine dobrá mechanická síla, houževnatost, abrasion resistance and chemical resistance with broad processability (Spinning, vytlačování, Injekční lisování), which makes them ubiquitous across textiles, consumer goods and industrial engineering applications.

Nylon Material Parts
Nylon Material Parts

2. Chemical structure and principal commercial grades

Basic chemistry

Nylons are polyamides formed by repeating amide bonds (–CO–NH–) in a polymer backbone.

Differences between grades arise from the monomers used and resulting repeat-unit spacing, which controls crystallinity, melting point and hydrolytic stability.

Common commercial grades (abbreviations and short notes)

  • PA6 (polycaprolactam / nylon 6): made by ring-opening polymerization of caprolactam. Dobrá houževnatost, slightly lower melting point than PA66; widely used for molded parts and fibers.
  • PA66 (poly(hexamethylene adipamide) / nylon 66): produced by condensation of adipic acid and hexamethylenediamine.
    Higher melting point and slightly higher stiffness and heat resistance than PA6.
  • PA11 / PA12 (long-chain nylons): lower water uptake and better chemical/low-temperature performance; often used for tubing, fuel lines and flexible parts. PA11 can be made from bio-based feedstock (castor oil).
  • Copolyamides (NAPŘ., PA6/66 blends): trade off properties; improved processability or hydrolytic stability.
  • Specialty polyamides: high-temperature nylons (NAPŘ., PA46), aromatic or semi-aromatic polyamides (higher performance, vyšší náklady).

3. Typical physical and mechanical properties (Typické rozsahy)

The table below gives typical engineering ranges for unfilled (elegantní) commercial nylons. Actual values depend on grade, conditioning (Obsah vlhkosti), and test method.

Vlastnictví Typický rozsah (neat PA6 / PA66) Praktická poznámka
Hustota (G · CM⁻³) 1.12–1.15 PA6 ≈1.13; PA66 ≈1.14
Pevnost v tahu (MPA) 50–90 Higher for PA66; glass fill raises to 100–200+ MPa
Youngův modul (GPA) 2.5–3,5 Increases with glass fill
Prodloužení při přetržení (%) 20–150 Highly ductile when dry; decreases with glass
Notched Izod (kJ·m⁻²) 20–80 Good impact toughness
Bod tání (° C.) PA6: ~215–220; PA66: ~255–265 Process and use temp implications
Skleněný přechod (° C.) ≈ 40–70 Moisture and crystallinity affect Tg
Absorpce vody (rovnováha, WT%) 0.5–3.0 (záleží na RH & stupeň) PA6 typically 1.5–2.5% at 50% RH; PA12/11 much lower
HDT (1.82 MPA) (° C.) 60–120 (elegantní) Glass fill raises HDT significantly

Návrh poznámky: mechanical properties listed above are for schnout pryskyřice; moisture equilibrium typically reduces modulus and increases toughness—so conditioned test data should be used for design.

4. Thermal behaviour and dimensional stability

  • Melting behaviour: PA6 and PA66 are semi-crystalline; their high crystallinity gives strength and thermal resistance but also anisotropic shrinkage.
  • Useful continuous service temperature: typically up to 80–120 °C for unfilled grades; glass-filled or heat-stabilized grades extend usable temperature.
  • Rozměrová stabilita: anisotropic shrinkage during molding and hygroscopic swelling are the key drivers of dimensional change.
    Designers must account for both processing shrinkage and moisture-induced expansion in tolerance stacks.

5. Moisture uptake and its effects — the defining practical constraint

Moisture is the single most important practical consideration for nylon material.

Nylon Injection molding Parts
Nylon Parts

Mechanismus & magnitude

  • Nylon absorbs water by diffusion into amorphous regions; equilibrium content depends on relative humidity and temperature.
  • Typical equilibrium water uptake: PA6 ~1.5–2.5 wt% (room conditions), PA66 slightly higher; PA11/PA12 << 1% (long-chain nylon advantage).

Effects on properties

  • Stiffness and strength decrease as water acts as a plasticizer (modulus down 10–30% at equilibrium).
  • Toughness and elongation often increase, reducing brittleness.
  • Dimensional change (swelling) can be significant (hundreds of µm for small parts) and must be accommodated by design or post-conditioning.
  • Processing implications: molded parts should be conditioned to expected service humidity before final inspection; drying before molding is essential to avoid hydrolysis (chain scission) in the melt.

Practical rules

  • For dimensionally critical parts, specify conditioning protocol (NAPŘ., schnout: 0.05% vlhkost, conditioned: 23°C/50% RH until equilibrium).
  • Consider long-chain nylons (PA11/PA12) or filled grades to reduce hygroscopicity.

6. Chemical resistance and electrical properties

  • Chemická odolnost: nylons resist hydrocarbons, oleje, greases and many solvents.
    Jsou attacked by strong acids, strong oxidizers and some halogenated solvents—especially at elevated temperature.
    Fuel and hydraulic compatibility depends on grade and exposure conditions; long-term immersion requires validation.
  • Elektrické vlastnosti: good electrical insulation when dry; dielectric constant and loss tangent change with moisture, so electrical applications require moisture-controlled environments or hermetic encapsulation.

7. Processing and manufacturing methods

Nylon Injection molding Parts
Nylon Injection Molding Parts

Common processes

  • Injekční lisování: dominant for complex shapes and high volume. Processing melt temps: PA6 ~230–260 °C; PA66 ~260–280 °C (start points — validate per grade).
    Molds are typically kept warm (60–90 ° C.) to control crystallization and reduce sink.
  • Vytlačování: pruty, trubice, profiles and films.
  • Blow molding/thermoforming: pro konkrétní známky (PA12 tubing, fuel lines).
  • Fiber spinning: nylon fibers for textiles and industrial tapes.
  • Obrábění: nylon can be machined from extruded stock; tooling geometry and chip control are important due to ductility.

Key processing controls

  • Sušení: nylon material must be dried (typical target moisture <0.2%) before melt processing to prevent hydrolysis and poor surface finish; drying schedules vary (NAPŘ., 80–100 °C for several hours).
  • Melt stability: avoid excessive residence time and high shear to prevent degradation.
  • Gate/flow design: manage weld lines and minimize orientation that leads to property anisotropy.

8. Reinforced and specialty nylons

Fillers and copolymerization tailor nylon material performance:

  • Glass-filled nylons (20–50% GF): increase modulus and dimensional stability, raise HDT, but reduce impact toughness and increase abrasive wear on mating parts.
  • Mineral fillers (talc, slída): moderate stiffness increase and improved creep resistance.
  • PTFE or graphite lubricated grades: lower coefficient of friction and reduce wear in sliding applications.
  • Flame-retardant, UV-stabilized and hydrolysis-stabilized grades are available for demanding environments.
  • Polyamide blends and copolymers (NAPŘ., PA6/PA66, PA6T) optimize processability and thermal performance.

9. Advantages and Limitations of Nylon Material

Advantages of Nylon

  • Vysoká síla a houževnatost
    Typical tensile strength ranges from 50–90 MPa (neat grades), with excellent impact resistance and fatigue performance.
  • Good wear and abrasion resistance
    Especially effective in gears, pouzdra, and sliding components; lubricated grades further improve tribological behavior.
  • Lightweight with good stiffness
    Density is low (~1.13–1.15 g/cm³), while stiffness can be significantly increased using glass or mineral fillers.
  • Chemická odolnost
    Resistant to oils, paliva, and many hydrocarbons, making nylon suitable for automotive and industrial environments.
  • Cost-effective and easy to process
    Compatible with injection molding and extrusion, with a wide range of commercially available grades.
  • Highly customizable
    Properties can be tailored through fillers, Posílení, stabilizátory, a maziva.

Limitations of Nylon

  • Absorpce vlhkosti (key limitation)
    Nylon is hygroscopic; moisture uptake (obvykle 1–3%%) reduces stiffness and strength and causes dimensional changes.
  • Teplotní limity
    Continuous service temperatures are usually below 120°C for standard grades; properties degrade at higher temperatures.
  • Creep under sustained load
    Long-term loads, especially at elevated temperature or humidity, can lead to deformation.
  • Rozměrová nestabilita
    Semi-crystalline structure and moisture sensitivity can cause warpage and tolerance drift.
  • Chemical sensitivity
    Poor resistance to strong acids, oxidizers, and some aggressive solvents.
  • Processing sensitivity
    Requires thorough drying before molding to prevent hydrolysis and loss of mechanical properties.

10. Applications of Nylon Material

  • Automobilový průmysl: sací potrubí (PA6/6T), fuel and brake lines (PA11/PA12), kryty motoru, gears and bearings.
  • Průmyslové stroje: pouzdra, válečky, Noste podložky, Komponenty dopravníku.
  • Konzumní zboží & spotřebiče: rychlostní stupně, panty, upevňovací prvky, toothbrush bristles (fibers).
  • Elektrický & elektronika: stahovací pásky, konektory (when moisture is controlled).
  • Textiles and composites: fibers, cordage, and reinforced composite matrices.
  • Lékařský: PA12 used for some medical devices (biocompatibility and sterilization considerations apply).

11. Comparison with other engineering plastics

Vlastnictví / Kritérium Nylon (PA6 / PA66) POM (Acetal) PTFE (Teflon) PROHLÉDNĚTE PBT UHMW-OR
Hustota (G · CM⁻³) 1.12–1.15 ≈1.40–1.42 ≈2.10–2.16 ≈1.28–1.32 ≈1.30–1.33 ≈0.93–0.95
Pevnost v tahu (MPA) 50–90 50–75 20–35 90–110 50–70 20–40
Youngův modul (GPA) 2.5–3,5 2.8–3,5 0.3–0,6 3.6–4.1 2.6–3.2 0.8–1.5
Tání / typical service temp (° C.) Tm ≈215 (PA6) / service ≈80–120 Tm ≈165–175 / service ≈80–100 Tm ≈327 / service up to ≈260 (mechanical limits) Tm ≈343 / service ≈200–250 Tm ≈220–225 / service ≈120 Tm ≈130–135 / service ≈80–100
Water uptake (WT%, eq.) ≈1.5–2.5% (PA6) ≈0.2–0.3% ≈0% ≈0,3–0,5 % ≈0.2–0.5% ≈0.01–0.1%
Koeficient tření (schnout) 0.15–0,35 0.15–0,25 0.04–0,15 (velmi nízké) 0.15–0,4 0.25–0,35 0.08–0,20
Nosit / tribologie Dobrý (improvable with fillers) Vynikající (gears/bushings) Chudý (improves with filler) Vynikající (filled best) Dobrý Vynikající (abrasion-resistant)
Chemická odolnost Good to hydrocarbons; poor to strong acids/oxidizers Good to fuels/solvents Vynikající (téměř univerzální) Vynikající (aggressive media) Dobrý Velmi dobré
Machinability
Dobrý (Machinable) Vynikající Veletrh (machinable from billet) Dobrý (tough but machinable) Dobrý Náročný (gumovitý)
Rozměrová stabilita Mírný (hygroscopic) Velmi dobré (málo hygroskopický) Vynikající Vynikající Dobrý Velmi dobré
Typické aplikace Ozubená kola, ložiska, pouzdra, hadice (PA11/12) Ozubená kola, precision bushings, komponenty paliva Těsnění, chemické vložky, low-friction surfaces High-temp bearings, kosmonautika, lékařské implantáty Elektrické konektory, pouzdra Vložky, Noste podložky, Komponenty dopravníku
Quick selection hint Choose when toughness and cost matter; manage moisture Choose for precision, low-friction mechanical parts Choose if chemical inertness & lowest µ are required Choose for high-temp & high-load critical parts Choose for good dimensional stability and molding ease Choose where extreme abrasion resistance and impact are needed

12. Udržitelnost, recycling and regulatory issues

  • Recyklace: Nylon material is mechanically recyclable; reclaimed PA may be downgraded for less critical use.
    Depolymerization (chemical recycling) routes exist and are industrially developing—they can recover monomer (caprolactam) or other feedstocks.
  • Bio-based options: PA11 (from castor oil) and PA610/1010 (partially bio-based) reduce fossil feedstock dependency.
  • Regulační: food contact and medical use require grade certification (FDA, EU) and compliance with extractables/leachables testing where appropriate.
  • Environmental concerns: life-cycle assessment varies by grade and filler; filling and glass content affect recyclability and embodied energy.

13. Conclusions and practical recommendations

Nylon (polyamide) je zralý, versatile engineering polymer family that balances strength, toughness and wear resistance with economic processability.

The wide palette of chemistries — from PA6 and PA66 to PA11 and PA12 — together with fillers and modifiers, permits fine-tuning for applications spanning textiles to high-performance automotive systems.

The principal engineering challenges are moisture management and chemical susceptibility in aggressive environments; these are addressed by appropriate grade selection (long-chain nylons), výplně, drying and design allowances.

Ongoing advances in recycling, bio-feedstocks and composite technology are extending nylon’s sustainability and application envelope.

 

Časté časté

Is PA6 or PA66 better?

PA66 typically offers higher melting point, mírně vyšší tuhost a lepší odolnost proti tečení; PA6 is easier to process and can be tougher. Choose based on temperature and processing constraints.

How should I specify nylon for dimensional control?

Specify the conditioning state for inspection (NAPŘ., “conditioned to 23 ° C., 50% RH until equilibrium”), and provide tolerances that account for moisture swelling and molding anisotropy.

Can nylon material be used in fuel lines?

Yes—PA11 and PA12 are common for fuel and hydraulic tubing due to low moisture uptake and good chemical resistance. Always validate with the specific fluid and temperature.

Are glass-filled nylons recyclable?

Mechanically, Ano, but glass content changes melt viscosity and property retention; recycled glass-filled nylon is typically used in less demanding applications unless chemically recycled.

How do I prevent hydrolysis during molding?

Thoroughly dry resin to the supplier’s specification and limit melt residence time and excessive barrel temperatures.

Zanechte komentář

Vaše e -mailová adresa nebude zveřejněna. Požadovaná pole jsou označena *

Přejděte na začátek

Získejte okamžitou cenovou nabídku

Vyplňte prosím své údaje a my Vás budeme obratem kontaktovat.