Rediģēt tulkojumu
pie Transposh - translation plugin for wordpress
CD3MWCuN Super Duplex Stainless Steel Pump Casings

CD3MWCuN Duplex Stainless Steel | ASTM A890 Grade 6A

1. Ievads

CD3MWCuN (UNS J93380, ASTM A890/A995 Grade 6A) is a high-performance super duplex stainless steel (SDSS) developed in the mid-1980s, specifically engineered to address the corrosion challenges of extreme service environments such as subsea oil and gas fields, chemical processing plants, and seawater desalination facilities.

Unlike conventional duplex stainless steels (DSS) piemēram, 2205, CD3MWCuN achieves a breakthrough balance of corrosion resistance, mehāniskā izturība, and processability through optimized alloying design, filling the performance gap between standard DSS and expensive nickel-based alloys (Piem., Hastelloy C276).

2. What is CD3MWCuN Duplex Stainless Steel?

CD3MWCuN is a super-duplex nerūsējošais tērauds alloy engineered to combine very high localized-corrosion resistance with elevated mechanical strength and practical manufacturability in both cast and wrought forms.

Its designation reflects the alloying emphasis — high Krekls (hroms), significant Noplūde (molibdēns) un W (volframs), deliberate N (slāpeklis) levels for austenite stabilization and strengthening, and a controlled Cu (vara) addition for improved behavior in certain reducing or acidic process media.

In engineering practice CD3MWCuN is specified where chloride-rich environments, Augstas mehāniskās slodzes, and long service intervals coincide — for example, subsea hardware, seawater pumps and valves, eļļas & gas manifolds, desalination plant components and aggressive chemical-process equipment.

CD3MWCuN Stainless Steel Gate Valves
CD3MWCuN Stainless Steel Gate Valves

Typical functional attributes (kopsavilkums)

  • Exceptionally high localized-corrosion resistance: engineered Cr–Mo–W–N balance yields PREN values usually well into the “super-duplex” range (screening indicator for excellent pitting/crevice resistance).
  • Augsta mehāniskā izturība: duplex structure delivers yield strengths and tensile strengths substantially greater than common austenitics (enabling thinner, lighter pressure parts).
  • Improved SCC tolerance: reduced susceptibility to chloride stress-corrosion cracking compared with 300-series austenitics and many lower-alloy duplex steels.
  • Castability for complex geometries: formulated to be produced as high-integrity castings (with appropriate foundry controls) so that complex components can be delivered near-net shape.
  • Good general corrosive stability: stable passive film under oxidizing conditions; alloying breadth gives versatility across many process chemistries.

3. Chemistry and metallurgical function of alloying elements

Veiktspēja CD3MWCuN duplex stainless steel is governed by a carefully balanced, multi-element alloy system designed to stabilize a two-phase ferrite–austenite microstructure while maximizing localized corrosion resistance and mechanical strength.

Elements Typical content (wt.%) Metallurgical function
Hroms (Krekls) 24.0 - 26.0 Primary passivating element; promotes formation of a stable Cr₂O₃ film; strong ferrite stabilizer
Niķelis (Iekšā) 6.0 - 8.5 Austenīta stabilizators; improves toughness and ductility
Molibdēns (Noplūde) 3.0 - 4.0 Pastiprina izturību pret bedres un plaisu koroziju; stiprina ferītu
Volframs (W) 0.5 - 1.0 Supplements Mo in improving localized corrosion resistance
Slāpeklis (N)
0.18 - 0.30 Powerful austenite stabilizer; solid-solution strengthening; Uzlabo pretestību bedrei
Varš (Cu) 0.5 - 1.0 Improves resistance to certain reducing acids; enhances general corrosion resistance
Ogleklis (C) ≤ 0.03 Kontrolēts, lai samazinātu karbīda nokrišņus
Mangāns (Nojaukšanās) ≤ 1.0 Dezoksidētājs; assists nitrogen solubility
Silīcijs (Un) ≤ 1.0 Dezoksidētājs; improves fluidity in casting
Fosfors (Pūtīt) ≤ 0.03 Atlikušais elements; limited to preserve toughness
Sērs (S) ≤ 0.02 Piemaisījumu kontrole
Dzelzs (Fe) Līdzsvars Base matrix element

4. Tipiskas mehāniskās īpašības (solution-annealed condition)

Īpašums Parasti diapazons / value Test condition / comment
0.2% pierādījums / Peļņas izturība, RP0.2 (MPA) 450 - 700 Variation by product form: castings toward lower end, forged/wrought at upper end
Stiepes izturība, Rm (MPA) 700 - 950 Istabas temperatūra, standard tensile specimen
Elongation at break, Izšķirt (%) 20 - 35 Higher for wrought/forged; castings may be toward lower bound
Reduction of area, Z (%) 30 - 50 Dependent on product form and heat treatment quality
Cietība, HB (Brinels)
220 - 350 Typical as-supplied; higher values may indicate cold work or local hardening
Charpy V-notch impact energy (Jūti) ≥ 50 - 150 (istabas temperatūra) Wide range—depends on casting quality and heat treatment; specify required minimum
Noguruma spēks (rotating bending, 10^7 cycles) (MPA) ~300 – 450 (application dependent) Strongly surface- and detail-dependent; use qualified S–N data for design
Ienest / tensile ratio (RP0.2 / Rm) ~0.60 – 0.80 Typical for duplex microstructure

5. Physical And Thermal Properties Of CD3MWCuN Duplex Stainless Steel

Īpašums Tipiska vērtība / diapazons Test condition / comment
Blīvums (g · cm⁻³) 7.80 - 7.90 Istabas temperatūra
Elastības modulis, E (GPA) 200 - 210 Istabas temperatūra; reduces with temperature
Poisson’s ratio, n 0.27 - 0.30 Engineering estimate: izmantot 0.28 kur nepieciešams
Siltumvadītspēja, kandids (W·m⁻¹·K⁻¹) 14 - 18 Pie 20 ° C; lower than ferritic steels, higher than many nickel alloys
Termiskās izplešanās koeficients (20–200 ° C) (×10⁻⁶ K⁻¹) 11.0 - 13.0 Use temperature-dependent curve for accurate thermal strain analysis
Īpatnējā siltuma jauda, cp (J·kg⁻¹·K⁻¹) 450 - 500 Istabas temperatūra; increases with temperature
Termiskā difūzija (m²·s⁻¹) ~4.5 – 7.0 × 10⁻⁶ Calculated from k/(ρ·cp); product dependent
Elektriskā pretestība (Ak; m)
~7.5 – 9.5 ×10⁻⁷ Istabas temperatūra; depends on exact chemistry
Magnetic behaviour Daļēji magnētisks Due to ferritic phase fraction; permeability depends on phase balance and cold work
Typical service temperature (nepārtraukts) −50 °C up to ≈ 300 ° C (ieteicams) Above ~300 °C, risk of intermetallic precipitation and loss of toughness/corrosion resistance; qualification needed for higher temps
Solis / šķidrs (° C) Alloy dependent; refer to supplier Duplex/super-duplex alloys solidify over a range; consult mill data for casting/welding practice

6. Izturība pret koroziju: Beyond Conventional Duplex Steels

CD3MWCuN’s corrosion resistance is its defining advantage, supported by a PREN (Ņemt = cr + 3.3Noplūde + 30N + 16Cu) of over 40, far exceeding 2205 DSS (PREN≈32) and 316L austenitic steel (PREN≈34).

Comprehensive test data confirms its performance in extreme environments:

Pitsing un plaisu izturība pret koroziju

Iekšā 6% FeCl₃ solution (ASTM G48 Method A), CD3MWCuN exhibits a pitting rate ≤0.015 g/(m²·h), with Critical Pitting Temperature (CPT) ≥40℃ and Critical Crevice Corrosion Temperature (CCCT) ≥35℃.

Field tests in seawater (salinity 35‰) show a corrosion rate ≤0.003 mm/year, suitable for long-term service in seawater desalination RO membrane shells.

Stresa korozijas plaisāšana (SCC) Izturība

In chloride-containing media, CD3MWCuN’s critical stress intensity factor KISCC ≥30 MPa·m¹/², pārspēt 2205 DSS (KISCC≈25 MPa·m¹/²).

It complies with NACE MR0175 standards for acidic oil and gas fields, tolerating H₂S partial pressure up to 20 kPa without SCC initiation.

Acid and Mixed Media Corrosion Resistance

Iekšā 10% H₂so₄ (25℃), its corrosion rate ≤0.05 mm/year, making it suitable for chemical reactor liners.

In flue gas desulfurization (Fgd) sistēmas (Cl⁻ + SO₃²⁻ mixed media), it maintains stable performance with no visible corrosion after 5,000 hours of service.

7. Casting Characteristics of CD3MWCuN

Being a high-alloy, cast super-duplex alloy introduces specific liešana izaicinājumi:

  • Wide freezing range and segregation: high alloy content increases the liquidus-to-solidus range, raising the likelihood of interdendritic segregation and trapped low-PREN residual liquid if feeding is inadequate.
  • Intermetallic precipitation: slow cooling or excessive thermal exposure during cleaning/welding can promote σ and χ phases in interdendritic regions and α/γ interfaces — these phases embrittle the material and degrade corrosion resistance.
  • Gas porosity and oxide inclusion sensitivity: strict melt cleanliness, degassing and ceramic filtration are critical — porosity reduces effective strength and corrosion performance.
  • Feeding & stāvvada dizains: virziena sacietēšana, properly sized feeders and chills are essential to avoid shrinkage defects; cast simulation is recommended for complex geometries.

Foundry requirements: vacuum or controlled atmosphere melting (Eafs + AOD/VOD), rigorous de-oxidation/fluxing, ceramic foam filtration, and validated solution anneal furnaces sized for the largest section are best practice when producing CD3MWCuN castings.

8. Termiskā apstrāde, Solution Anneal and Thermal Stability

Šķīduma rūdīšana

  • Mērķis: dissolve intermetallics and eliminate segregation, restore duplex phase balance and maximize corrosion resistance.
  • Typical window:apm.. 1,050–1,100 ° C (exact cycle depends on section thickness), seko Ātra dzēšana (water or fast air quench) to avoid reprecipitation.
  • Mērcēšanas laiks: scaled to maximum section size; thick castings require extended soak to fully homogenize.

Termiskā stabilitāte & Fāzes nokrišņi

  • Sigma phase and other intermetallics can form on prolonged exposure in the 600–900 ° C diapazons, embrittling the alloy and reducing corrosion resistance. Avoid thermal excursions into this range for prolonged periods.
  • Nitride precipitation and chromium carbide formation are concerns if cooling/heat cycles are not controlled — low carbon and appropriate furnace practice reduce sensitivity.

9. Metināšana, Fabrication and Machining Best Practices

CD3MWCuN Duplex Stainless Steel Parts
CD3MWCuN Duplex Stainless Steel Parts

Metināšana

  • Palīgmateriāli: use matching or slightly over-matching filler metals designed for super-duplex composition to help restore corrosion resistance in weld metal.
  • Heat input control: minimize heat input and control interpass temperature to avoid excessive local thermal cycles that encourage σ/χ formation in the HAZ.
  • Pre/post treatments: for critical components, post-weld solution anneal is commonly specified to restore homogeneous microstructure; for field repairs, low heat input TIG with qualified PQR/WPS and local post-weld solutioning where practicable is advised.
  • Hydrogen control: standard precautions apply — dry electrodes, low hydrogen processes where appropriate.

Apstrāde

  • Mašīnīgums: duplex/super-duplex steels are tougher and harder than austenitics — use robust carbide tooling, positive rake, rigid fixturing, and coolant. Expect lower cutting speeds than for stainless 304/316.
  • Threading and inserts: for repeated assembly, consider stainless steel orustenitic/bronze inserts if required for wear; specify thread engagement accordingly.

Fabrication advice

  • Avoid oxy-fuel thermal cutting on critical castings before solution anneal — local heating can precipitate intermetallics and cause brittle cracks at riser roots.
    If thermal cutting is unavoidable, prefer mechanical/safer cutting (zāģēšana) followed by solution anneal.

10. Surface Finishing and Corrosion Protection Options

  • Marinēšana & pasniegšana: standard nitric/hydrofluoric or citric acid passivation tailored for duplex chemistry removes contaminants and promotes a stable passive film.
  • Mehāniskā apdare: šāviens, grinding and polishing improve surface condition and fatigue life; avoid excessive cold work that raises residual stresses.
  • Pārklājumi: polymeric paints, epoxy linings or specialised coatings provide extra protection in extremely aggressive media or to mitigate crevice corrosion risk.
  • Katodiskā aizsardzība: in massive subsea structures cathodic protection (sacrificial anodes or impressed current) complements CD3MWCuN’s innate resistance in severe marine environments.

11. Typical Applications of CD3MWCuN Stainless Steel

CD3MWCuN Super Duplex Stainless Steel Impeller
CD3MWCuN Super Duplex Stainless Steel Impeller
  • Subsea components: daudzveidība, savienotāji, skavas, stiprinājumi (where high PREN and strength are required).
  • Vārsti & armatūra: vārstu ķermeņi, bonnets and trim for seawater and produced water service.
  • Sūkņu apvalki & lāpstiņriteņi: seawater and brine pumps where erosion-corrosion and pitting are risks.
  • Atsāšana & RO systems: components exposed to high chloride brines.
  • Ķīmiskā apstrādes iekārta: siltummaiņi, reaktori, and piping in chloride-containing streams.
  • Eļļas & gas topside / topside tubulars: where high strength and corrosion resistance lower part count and weight.

12. Advantages and limitations

Advantages of CD3MWCuN Stainless Steel

  • High pitting/crevice resistance for chloride environments (PREN often > 40 for well-alloyed heats).
  • Augsta mehāniskā izturība — allows thinner sections and weight savings compared with austenitics.
  • Good SCC resistance relative to 300-series stainless steels.
  • Castable for complex geometries with careful foundry practice, enabling consolidation of parts.

Limitations of CD3MWCuN Stainless Steel

  • Maksāt: higher alloying (Noplūde, W, N) increases material and melt cost relative to common grades.
  • Liešana & heat-treat complexity: requires careful foundry control, possible solution anneal and NDT; large parts may be hard to heat treat uniformly.
  • Weld/repair sensitivity: welding requires qualified consumables and controls; risk of sigma or other detrimental phases if mishandled.
  • Machining hardness: tougher to machine than austenitic grades — tooling & cycle design must account for that.

13. Comparative Analysis — CD3MWCuN Versus Similar Alloys

This section compares CD3MWCuN with commonly considered alternatives for chloride-bearing and structural applications: divstāvu 2205, super-duplex 2507, un 316Lukturis (austenīts).

Īpašums CD3MWCuN (representative cast super-duplex) Divstāvu 2205 (izkaltis) Super-duplekss 2507 (izkaltis) 316Lukturis (austenīts / cast equiv.)
Representative chemistry (WT%) Cr ≈ 25.0; Ni ≈ 4.0; Mo ≈ 3.6; W ≈ 0.5; N ≈ 0.30 Cr ≈ 22.0; Ni ≈ 5.0; Mo ≈ 3.1; N ≈ 0.17 Cr ≈ 25.0; Ni ≈ 6.5; Mo ≈ 4.0; N ≈ 0.28 Cr ≈ 17.0; Ni ≈ 10.0; Mo ≈ 2.5; N ≈ 0.03
Malka (calc. = Cr + 3.3·Mo + 16·N + 0.5·W) 41.93 (25.00 + 11.88 + 4.80 + 0.25) ≈ 42 34.95 (22.00 + 10.23 + 2.72) ≈ 35 42.68 (25.00 + 13.20 + 4.48) ≈ 42.7 25.73 (17.00 + 8.25 + 0.48) ≈ 25.7
Typical tensile (UTS), MPA 700 - 900 620 - 850 800 - 1000 480 - 650
Ienest (0.2%), MPA 450 - 700 450 - 550 650 - 800 200 - 300
Pagarināšana (A5) 10 - 25% (sadaļa atkarīga) 15 - 30% 10 - 20% 35 - 50%
Blīvums (g · cm⁻³) ~7.8 – 8.0 ~7.8 – 7.9 ~7.8 – 7.9 ~ 7,9 - 8.0
Liešana Labi (engineered for casting) Mērens (cast duplex possible but demanding) Izaicinošs (super-duplex casting needs expert control) Lielisks (cast equivalents like CF8M exist)
Metināmība
Good when using matched duplex consumables; nepieciešama kontrole Good with qualified procedures More demanding; requires tight control Lielisks
SCC / hlorīda izturība Augsts for many seawater/brine services (Koks ≈ 42) Moderate-high (good for many services) Ļoti augsts (PREN ≈ 41–45) Zems vidējs; susceptible to pitting/SCC in chlorides
Tipiskas lietojumprogrammas Cast valve bodies, subsea components, pump casings for seawater/brine Siltummaiņi, spiediena tvertnes, piping where duplex strength needed Critical subsea, highly aggressive chloride environments General chemical process, pārtika, farmācija, mild chloride services
Relatīvās materiālu izmaksas Augsts (lītošs + melt complexity) Vidējs Ļoti augsts Zems -Medium

14. Secinājums

CD3MWCuN is a cast super-duplex stainless steel family that offers an attractive combination of lielas izturības un excellent localized corrosion resistance for demanding chloride-bearing environments.

Its suitability for complex cast parts makes it an excellent option where integration, weight saving and corrosion performance are required simultaneously.

Successful use depends on rigorous foundry practice (solidification control, izkausēt tīrību, ferrite control), appropriate heat treatment, un qualified fabrication/welding procedures.

When specified and processed correctly, CD3MWCuN provides durable, high-performance castings for subsea, atsāšana, eļļas & gas and chemical industries.

 

FAQ

What does PREN > 40 mean in practice?

Malka > 40 indicates strong pitting and crevice resistance. Praktiski, it means the alloy will resist localized attack in seawater and many high-chloride process streams at temperatures and flow conditions that would pit lower-PREN materials.

Is CD3MWCuN suitable for subsea use?

Yes — when cast/forged and fabricated under qualified procedures, and with controlled surface finish and inspection, CD3MWCuN is widely used in subsea components and seawater-exposed hardware.

Can CD3MWCuN be welded without post-weld heat treatment?

Welding is feasible without PWHT if procedures are qualified and heat input is tightly controlled; lai arī, for the most critical components or where HAZ performance is paramount, post-weld solution anneal (or other validated remedial measures) may be required.

How does CD3MWCuN compare with superaustenitic alloys?

Superaustenitics may match or exceed PREN in some chemistries and offer better ductility/formability, but CD3MWCuN generally provides higher strength and often a more favorable lifecycle cost in chloride-dominated, mechanically demanding service.

Atstājiet komentāru

Jūsu e -pasta adrese netiks publicēta. Nepieciešamie lauki ir marķēti *

Ritiniet līdz augšai

Saņemiet tūlītēju citātu

Lūdzu, aizpildiet savu informāciju, un mēs ar jums nekavējoties sazināsimies.