Übersetzung bearbeiten
von Transposh - Übersetzungs-Plug-In für WordPress
Inconel 718 Superalloy CNC -Teile

Inconel 718 Superalkoy | UNS N07718 | W.NR. 2.4668

Inhaltstabelle Zeigen

1. Einführung

Inconel 718 is a precipitation-hardened nickel-based superalloy known for its high strength at elevated temperatures (up to 650°C), Hervorragende Korrosionsbeständigkeit, Und good manufacturability.

Its strength comes from a unique combination of alloying elements—especially Niob, which forms hardening phases that enhance mechanical performance without compromising weldability.

Developed in the 1960s by Special Metals Corporation, Inconel 718 addressed key shortcomings in earlier alloys, such as poor weldability and limited high-temperature strength.

Heute, it plays a vital role in Luft- und Raumfahrt, Stromerzeugung, und Öl & Gasindustrie, where structural integrity under extreme conditions is critical.

2. What Is Inconel 718?

Inconel 718 (UNS N07718; W.NR. 2.4668) is a nickel-chromium-niobium superalloy widely regarded as a “workhorse” material due to its exceptional balance of performance and processability.

Unlike many high-strength superalloys, es bietet excellent high-temperature strength alongside superior weldability and machinability, making it highly versatile across complex manufacturing environments.

Its global adoption is reflected in numerous international standards, einschließlich ASTM B637 (bars and rods), AMS 5662 (aerospace-grade forgings), Und ISO 9723 (European rod and wire specifications), ensuring consistent quality and reliability across industries.

Inconel 718 round rod
Inconel 718 round rod

Chemische Zusammensetzung

Inconel 718’s properties come from its carefully balanced chemical composition:

Element Inhalt (%) Funktion
Nickel (In) 50.0–55.0 Basismatrix; corrosion resistance and strength
Chrom (Cr) 17.0–21.0 Oxidation and corrosion resistance
Eisen (Fe) Gleichgewicht (~ 18) Filler element; balances structure
Niob (NB) + Tantal (Gesichtsansicht) 4.75–5.50 Primary strengthening phase (C") Bildung
Molybdän (MO) 2.80–3.30 Feste Lösung Stärkung; Lochfraßwiderstand
Titan (Von) 0.65–1,15 Strengthening via γ′ precipitation
Aluminium (Al) 0.20–0.80 Forms γ′ phase; Oxidationsresistenz
Kobalt (CO) ≤ 1,0 May enhance high-temp strength (optional)
Kohlenstoff (C) ≤ 0,08 Controlled to minimize grain boundary sensitization
Mangan (Mn) ≤0.35 Desoxidisator; improves hot workability
Silizium (Und) ≤0.35 Improves oxidation resistance in small amounts
Schwefel (S) ≤ 0,015 Verunreinigung; kept low to avoid hot cracking
Bor (B) ≤0.006 Grain boundary strengthener (trace element)

3. Mechanical Properties of Inconel 718 at Different Temperatures

Eigentum Zimmertemperatur (25° C) 538° C (1000° F) 650° C (1200° F)
Ertragsfestigkeit (0.2% Offset, MPA) ~1,035 ~ 930 ~760–820
Ultimative Zugfestigkeit (MPA) ~1,280–1,380 ~1,110 ~950–1,000
Verlängerung (%) 12–20 ~ 18 ~ 15
Kriechbruchkraft (MPA, 1000H) - ~725 ~690
Ermüdungsstärke (HCF, MPA) ~ 450 (10⁷ Zyklen) ~380 ~ 320
Frakturschärfe (K_IC, MPA · √m) ~120–150 ~110–130 ~100–120
Härte (HRC) 36–45 34–40 32–38

4. Korrosion und Oxidationsresistenz

Inconel 718 bietet herausragenden Widerstand gegen eine Vielzahl von korrosiven Umgebungen, making it highly reliable in applications exposed to Aggressive Chemikalien, Feuchtigkeit, Und high-temperature oxidizing conditions.

Its corrosion resistance is primarily due to its high nickel (In) Und Chrom (Cr) Inhalt, zusammen mit Molybdän (MO) Und Niob (NB) for enhanced pitting and crevice corrosion resistance.

Öl- und Gasindustrie Inconel 718 CNC -Teile
Öl- und Gasindustrie Inconel 718 CNC -Teile

Korrosionsbeständigkeit

Umfeld Performance Summary
Chloride-rich (z.B. Meerwasser) Hervorragende Beständigkeit gegen Loch- und Spaltkorrosion; suitable for marine and offshore use
Sour gas (H₂s) Compliant with Geboren MR0175/ISO 15156; resistant to Sulfidstress knacken
Säuren (z.B. Hno₃, H₂so₄) Good resistance in mixed acid environments; mäßig in highly reducing acids
Industrial atmospheres Stable in feucht, polluted, and acidic conditions, including flue gas and refinery settings
High-temperature water/steam Suitable for use in nuclear and power generation systems; retains passivity at elevated pressure/temperature

Inconel 718 wird oft in verwendet downhole oilfield tools, Chemische Reaktoren, Befestigungselemente, Und Wärmetauscher where corrosion is a critical factor.

Oxidationsresistenz

Inconel 718 performs well in oxidizing atmospheres up to ~980°C, although its mechanical strength limits practical service to ~650°C.

  • Protective oxide film: The alloy forms a dense Cr₂O₃ (chromia) Schicht, which resists spalling and protects against further oxidation.
  • Thermalradfahren: Maintains surface integrity during wiederholte Heizung und Kühlung, suitable for jet engine components and turbine hardware.
  • Schwefelung: Better resistance compared to stainless steels in high-sulfur combustion environments, though less than some higher Mo-containing alloys.

Wear and Galling Resistance

Though not a primary wear alloy, Inconel 718 Shows good resistance to adhesive wear and galling, especially in bolted joints and valve components operating under high loads and temperatures.

5. Manufacturing and Processing Techniques

Während Inconel 718 exhibits excellent mechanical properties and corrosion resistance, es ist hohe Stärke Und arbeitshärtende Tendenz introduce processing challenges.

Trotzdem, es ist fabricability surpasses many other nickel-based superalloys, owing to its balanced chemistry and microstructural stability.

Inconel 718 Teile
Inconel 718 Teile

Schweißen

  • Bevorzugter Prozess: Bogenschweißen von Gastwolfram (GTAW or TIG) ist am häufigsten, utilizing matching filler metals such as ERNiFeCr-2 to ensure compositional compatibility.
  • Schlüsselüberlegungen:
    • Precise control of heat input (typically 100–150 A current) is vital to prevent liquation cracking Und heißes Knacken in der hitzebürbigen Zone (Gefahr).
    • Pre-weld cleaning and shielding gas purity reduce contamination and porosity.
    • Wärmebehandlung nach dem Schweigen (PWHT) involves solution annealing around 980° C, followed by double aging to restore mechanical strength and precipitate distribution.
  • Leistung: Welded joints typically retain approximately 85% of the base metal’s tensile strength at room temperature und bis zu 90% bei erhöhten Temperaturen (~650°C), making welded Inconel 718 components highly reliable in critical environments.

Bearbeitung

  • Herausforderungen:
    • Inconel 718’s rapid work hardening—where the machined surface hardness can increase by up to 50%—leads to accelerated tool wear and thermal stresses.
    • Low thermal conductivity causes heat to concentrate at the cutting zone.
  • Lösungen:
    • Verwenden Carbid -Werkzeuge with advanced coatings such as Tialn to improve tool life and reduce adhesion.
    • Anwenden niedrige Schnittgeschwindigkeiten (5–10 m/i) kombiniert mit Höhere Futterraten to minimize heat buildup.
    • Beschäftigen high-performance coolants with extreme pressure (EP) additives for efficient heat dissipation.
  • Cost Impact: Due to tooling wear and slower speeds, machining Inconel 718 kann sein 3 Zu 4 times more expensive than common stainless steels like 316L, influencing part design and production economics.

Forging and Forming

  • Heißes Schmieden:
    • Conducted between 980°C and 1,040°C to reduce yield strength and increase ductility during deformation.
    • Allows effective grain refinement and uniform distribution of strengthening precipitates.
    • Subsequent heat treatments restore full mechanical properties.
  • Kaltform:
    • Generally limited to light bending and shaping due to the alloy’s high strength and work hardening.
    • Erfordert Intermediate Tempern (around 900°C) to relieve stresses and restore ductility for more complex shapes.
  • Careful control of forming parameters prevents knacken Und Oberflächenfehler.

Casting

  • Feinguss is often used for complex geometries like turbine blades and rocket motor components.
  • Jedoch, geschmiert (forged or rolled) Formen von Inconel 718 are more common for critical load-bearing applications due to:
    • Better mechanical properties- Typisch, cast Inconel 718 Exponate ~10% lower tensile strength and reduced fatigue life compared to wrought material.
    • More uniform microstructure and fewer casting defects.
  • Casting requires strict control of solidification rates and post-cast heat treatments to reduce segregation and porosity.

Additive Fertigung

  • Recent advances have enabled Laserpulverbettfusion (LPBF) Und Elektronenstrahlschmelzen (EBM) von Inconel 718.
  • AM offers:
    • Complex geometries without tooling.
    • Reduzierter Materialabfall.
    • Fine microstructures with potentially improved mechanical properties.
  • Nachbearbeitung (heißes isostatisches Pressen, Wärmebehandlung) remains essential to reduce porosity and optimize precipitation phases.

6. Heat Treatment of Inconel 718

Heat treatment is fundamental to achieving the exceptional mechanical properties of Inconel 718.

The process primarily involves Lösung Glühen gefolgt von precipitation (Alter) Härten, which controls the size, Verteilung, and volume fraction of key strengthening phases—mainly γ″ and γ′—within the nickel-based matrix.

  • Lösung Glühen: Heating to 980–1,065°C for 1–2 hours, gefolgt von Wasserlöschung. This dissolves excess precipitates and homogenizes the microstructure.
  • Intermediate Aging: Heating to 720°C for 8 Std., then furnace-cooling to 620°C at 50°C/hour.
  • Final Aging: Holding at 620°C for 8 Std., then air-cooling. This promotes the formation of γ″ and γ′ precipitates, maximizing strength.

δ-Phase Control

  • The δ-phase (N₃nb) forms primarily along grain boundaries between 750°C and 900°C.
  • While small amounts of δ-phase help control grain growth and improve creep resistance, excessive δ-phase reduces the niobium available for γ″ precipitation, leading to diminished strength.
  • Heat treatment schedules are carefully controlled to balance δ-phase formation, ensuring optimal mechanical properties and toughness.

7. Bewerbungen von Inkonsum 718

Inconel 718’s unique combination of hohe Stärke, Hervorragende Korrosionsbeständigkeit, Und Wärmestabilität makes it a material of choice across a wide range of demanding industries.

Inconel 718 Turbinenrad
Inconel 718 Turbinenrad

Luft- und Raumfahrtindustrie

  • Turbine Engines:
    Inconel 718 is extensively used for Turbinenscheiben, Klingen, und Robben In Jet -Motoren, where it withstands high centrifugal forces and elevated temperatures (up to 650°C) without compromising mechanical integrity.
  • Rocketry and Spacecraft:
    Components such as rocket motor cases, thrust chambers, und Befestigungselemente benefit from its strength-to-weight ratio and excellent weldability, critical for launch vehicle reliability.
  • Airframe Components:
    Its corrosion resistance and fatigue strength are ideal for Fahrwerksteile, Buchsen, und strukturelle Komponenten exposed to harsh environments.

Stromerzeugung

  • Gasturbinen:
    Inconel 718 is commonly used in Kompressorblätter, Discs, und Turbinenkomponenten due to its high-temperature strength and creep resistance.
  • Steam Turbines:
    Utilized in parts exposed to high temperature and steam environments, where oxidation resistance is essential.

Öl & Gassensektor

  • Downhole Tools:
    Inconel 718’s corrosion resistance and strength under high pressure and temperature make it ideal for Bohrkragen, Stabilisatoren, and packers in harsh subterranean environments.
  • Valves and Fittings:
    Resistant to sulfide stress cracking and chloride-induced corrosion, it’s widely used in Ventile, Pumps, und Druckbehälter handling sour gas and corrosive fluids.
  • Offshore -Plattformen:
    Exposure to marine environments necessitates alloys like Inconel 718 to combat saltwater corrosion and mechanical stress.

Emerging and Specialized Applications

  • Additive Fertigung:
    The alloy’s compatibility with laser powder bed fusion (LPBF) and electron beam melting (EBM) enables the production of complex, lightweight parts previously impossible with traditional manufacturing.
  • High-Speed Machining Tools:
    Cutting tools made from Inconel 718 withstand high thermal and mechanical loads, extending tool life in demanding operations.
  • Kryogene Anwendungen:
    Its retained toughness at extremely low temperatures (down to -270°C) makes it suitable for liquefied gas storage and transport equipment.

8. Performance Limitations and Failure Modes

  • Thermomechanical Fatigue (TMF): Fails after 500–1,000 cycles (25°C to 650°C) under combined thermal and mechanical stress, a risk in turbine engines.
  • Thermal Embrittlement: Prolonged exposure above 700°C causes δ-phase coarsening, reducing toughness by 30% and increasing fracture risk.
  • Stresskorrosionsrisse (SCC): Occurs in hot (>100° C) Chloridlösungen (Z.B., offshore cooling systems) at stresses >70% der Ertragsfestigkeit, though rare in well-designed systems.

9. Vorteile und Einschränkungen

Inconel 718 stands out as one of the most versatile and widely used nickel-based superalloys, offering a unique combination of properties that make it suitable for extreme and demanding environments:

Vorteile von Inconel 718

Außergewöhnliche Hochtemperaturstärke

  • Maintains high tensile, Ertrag, and creep strength up to approximately 650° C, outperforming many other alloys in similar conditions.

Outstanding Corrosion and Oxidation Resistance

  • Forms a stable, protective oxide layer that resists oxidation at elevated temperatures.
  • Highly resistant to Chlorid, Schwefel, and acidic environments, making it ideal for harsh chemical and marine applications.

Good Fabricability and Weldability

  • Unlike many other nickel-based superalloys, Inconel 718 kann sein welded reliably with minimal cracking risks.
  • Es ist Verarbeitbarkeit, while challenging, is better than many other superalloys, enabling efficient manufacturing.

Hervorragende Kriech- und Müdigkeitsbeständigkeit

  • Exhibits superior resistance to creep deformation Und thermomechanical fatigue, essential for aerospace turbine components and power generation equipment.

Wide Temperature Range Performance

  • Maintains mechanical properties from kryogene Temperaturen (-270° C) to high temperatures (~650°C).

Microstructural Stability

  • Controlled precipitation hardening and stable microstructure reduce phase instability and prolong component life.

Compatibility with Advanced Manufacturing

  • Adaptable to Additive Fertigung techniques such as laser powder bed fusion (LPBF) and electron beam melting (EBM), enabling complex part geometries.

Einschränkungen von Inconel 718

  • Hohe Kosten: Rohstoff ($40–60/kg) is 8–10× 316L; machining adds 30–50% to fabrication costs.
  • Verarbeitungskomplexität: Requires specialized melting (VIM-VAR) und Werkzeug, limiting accessibility.
  • Temperature Ceiling: Ineffective above 650°C; replaced by Inconel 738 or single-crystal alloys for >700° C.

10. Vergleich mit anderen Materialien

Inconel 718 is often compared to other superalloys, Edelstähle, and titanium alloys when selecting materials for extreme environment applications.

Understanding these comparisons helps highlight its strengths and limitations.

Inconel 718 vs. Other Nickel-Based Superalloys

Material Temperaturfähigkeit (° C) Stärke Förderfähigkeit Typische Anwendungen
Inconel 718 Bis zu ~ 700 ° C. Hoch (due to γ″, C') Gute Schweißbarkeit und Verwirrbarkeit Turbinenscheiben, Luft- und Raumfahrtkomponenten, Öl & Gas
Inconel 625 Bis zu ~ 980 ° C. Mäßig Ausgezeichnete Schweißbarkeit Korrosionsbeständigkeit, Chemische Verarbeitung
Waspaloy Up to ~730°C Sehr hoch Schwieriger zu bearbeiten High-temp turbine blades, Düsenmotorteile
Rene 41 Up to ~760°C Sehr hoch Challenging weldability Aircraft engine turbine disks
  • Zusammenfassung: Inconel 718 offers a balanced combination of high strength and relatively good fabricability, unlike some other superalloys that prioritize high-temperature strength at the expense of manufacturability.

Edelstahl vs. Inconel 718

Material Temperaturfähigkeit (° C) Korrosionsbeständigkeit Stärke Typische Anwendungen
Inconel 718 Bis zu ~ 700 ° C. Exzellent (Oxidation, Korrosion) Sehr hoch High-temp aerospace, Stromerzeugung
316L Edelstahl Bis zu ~ 400 ° C. Gut (Korrosionsbeständigkeit) Mäßig Chemische Panzer, Meeresbeschläge
17-4 PH Edelstahl Up to ~480°C Gut Moderat bis hoch Luft- und Raumfahrt, Pumpwellen, Ventile
  • Zusammenfassung: Inconel 718 übertreffen Edelstähle at elevated temperatures and under aggressive corrosion conditions, making it the preferred choice when strength and oxidation resistance are critical.

Inconel 718 vs. Titanlegierungen

Material Temperaturfähigkeit (° C) Stärke-zu-Gewicht-Verhältnis Korrosionsbeständigkeit Typische Anwendungen
Inconel 718 Bis zu ~ 700 ° C. Mäßig Exzellent High-temp components, Turbinenscheiben
Ti-6Al-4V Bis zu ~ 400 ° C. Sehr hoch Gut Luft- und Raumfahrtstrukturteile, Medizinische Implantate
Von-6242 Up to ~540°C Hoch Gut Jet engine compressor blades, Struktureile
  • Zusammenfassung: Titan alloys excel in strength-to-weight ratio and corrosion resistance at moderate temperatures, but Inconel 718 remains superior for higher temperature applications where strength retention is essential.

Key Takeaways

  • Strength and Temperature: Inconel 718 offers exceptional strength and stability at temperatures up to about 700°C,
    surpassing most stainless steels and titanium alloys, but slightly less than some specialized superalloys.
  • Förderfähigkeit: It provides better weldability and machinability compared to many other nickel-based superalloys, reducing manufacturing complexity and cost.
  • Korrosionsbeständigkeit: Inconel 718 is highly resistant to oxidation, Chlorid, and acid corrosion, making it suitable for marine, Chemikalie, and high-temperature oxidizing environments.
  • Kosten: Generally more expensive than stainless steels and titanium alloys but offers superior performance in harsh environments where failure is not an option.

11. Abschluss

Inconel 718 remains one of the most versatile and widely used superalloys in high-performance engineering.

Its unique ability to combine hohe Stärke, Ermüdungsleben, Korrosionsbeständigkeit, Und manufacturing adaptability makes it indispensable in mission-critical applications.

While newer alloys may offer better high-temperature properties, Inconel 718’s Verarbeitbarkeit, Kosteneffizienz, Und well-documented performance ensure its continued dominance in aerospace, Energie, and advanced manufacturing sectors.

FAQs

What is the maximum operating temperature for Inconel 718?

It performs reliably up to 650°C (1,200° F) für kontinuierlichen Service. For short durations (Minuten bis Stunden), it can withstand up to 800°C, but strength declines significantly above 650°C.

Ist Inconel 718 magnetisch?

NEIN. Its austenitic microstructure remains non-magnetic in all conditions, unlike duplex stainless steels or some nickel-iron alloys.

Wie macht Inconel 718 compare to titanium alloys?

Inconel 718 offers higher strength at >400° C (titanium alloys lose strength rapidly above 300°C) but is denser (8.1 g/cm³ vs.

Ti-6Al-4V’s 4.43 g/cm³), making it less suitable for weight-critical, low-temperature applications.

Kann Inconel 718 be used in seawater?

Ja. Seine Korrosionsrate im Meerwasser ist <0.02 mm/Jahr, making it suitable for subsea components, though it is more costly than 316L or duplex stainless steels for non-high-temperature marine applications.

What causes Inconel 718 to fail?

Common modes include thermomechanical fatigue (TMF) in turbine engines, thermal embrittlement above 700°C, and rare SCC in hot chloride environments.

Richtiges Design (Stress <70% Ertrag) and heat treatment mitigate these risks.

Hinterlasse einen Kommentar

Ihre E -Mail -Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *

Scrollen Sie nach oben

Holen Sie sich sofort ein Angebot

Bitte geben Sie Ihre Informationen aus und wir werden Sie umgehend kontaktieren.