1. Indledning
Die casting produces complex metal parts with exceptional speed and repeatability.
Broadly defined, die casting injects molten metal under high pressure into precision-engineered steel molds—known as dies—to yield near-net-shape components.
This technique traces its beginnings to the early 19th century, when John Wilkinson’s pioneering experiments with iron cylinders laid the groundwork for mass production.
I løbet af det forgangne århundrede, innovations such as hot- and cold-chamber machines propelled die casting into automotive and appliance markets.
I dag, die casting underpins industries that demand high throughput, konsekvent kvalitet, and fine detail, making it strategically vital to global manufacturing.
2. Hvad er die casting?
Die casting injects molten non-ferrous alloys—most commonly zinc, aluminium, and magnesium—into precision-engineered dies under pressures up to 1,500 bar.
As the molten metal fills every cavity, it solidifies within 10–50 milliseconds, reproducing intricate details and thin walls (ned til 0.5 mm) that other casting methods cannot achieve.
After solidification, the machine opens, and ejector pins push out the part.
Manufacturers achieve dimensional tolerances of ± 0,1 mm and as-cast surface finishes as smooth as Ra 0.8 µm, significantly reducing or even eliminating secondary machining.
3. Die Casting Process
The die casting cycle transforms molten metal into precision components in just seconds.
By tightly controlling each step—from mold preparation to part ejection—manufacturers achieve remarkable speed, gentagelighed, og kvalitet.

Below is an in-depth look at the typical workflow and key parameters:
Formforberedelse & Klemme
Before any metal flows, operators prepare the die:
- Die Temperature Control
They preheat steel dies (commonly H13 or P20) til 150–200 °C, ensuring consistent solidification. Too cold, and metal chills prematurely; too hot, and cycle times lengthen. - Die Release & Smøring
A thin spray of water- or oil-based lubricant reduces friction and prevents soldering. Modern systems automate lubrication to maintain ±5 g consistency per cycle. - Klemme kraft
Hydraulic or mechanical presses apply forces from 50 til 3,500 tonsvis, matching injection pressure (op til 1,500 bar) across the die’s projected area to avoid flash and part deformation.
Metal Injection
Once the mold is secured, the injection sequence begins:
Shot Charging
- Hotskammermaskiner draw molten zinc (< 380 ° C.) directly into the injection cylinder, aktivering cycle times under 15 s.
- Koldkammermaskiner ladle aluminum or magnesium (≈ 600 ° C.) into a separate shot chamber, trading speed for alloy flexibility.
Injection Profile
- A high-velocity “fast shot” fills the cavity in 10–30 ms, followed by a lower-pressure “intensification” phase—typically 300–1,000 bar for 2–5 s—to pack the metal and counteract shrinkage.
Cavity Fill & Størkning
- Tyndvæggede sektioner (≥ 0.5 mm) freeze in as little as 10 ms, while thicker bosses (op til 10 mm) solidify within 50–100 ms. Rapid solidification drives cycle times down to 15–90 s pr. skud.
Ejekter & Trimning
With the metal solidified, the machine transitions to part removal:
- Die Opening & Core Release
Specialized lifters and slides retract, liberating complex undercuts. - Ejector System
Ejector pins push the casting out with controlled strokes—typically 20–50 mm travel—to avoid marking critical surfaces. - Blitz & Runner Removal
Integrated trimming presses shear off excess material in under 10 s, preparing parts for inspection.
Finishing Process
The final step in the process is to finish the part. Surface finishing plays a vital role in die casting, as it can impact the durability and function of the part.
Standard finishing processes include Anodisering, pulverbelægning, wet plating, and many more.
4. Types of Die Casting
Die casting adapts to diverse production requirements through several process variants.
Each type balances speed, Materiel kompatibilitet, and part quality, enabling engineers to select the optimal method for a given application.
Hot-Chamber Die Casting
Primarily used for low-melting alloys (F.eks., zinc and lead), hot-chamber machines integrate the injection mechanism directly into the molten-metal pot.
Følgelig, the cycle accelerates—often under 15 sekunder—because the shot chamber fills automatically.
Som et resultat, hot-chamber die casting achieves exceptionally high throughput (op til 240 cycles per hour) and excellent surface detail.
Imidlertid, the process limits metal selection to alloys with melting points below 450 ° C..
Cold-Chamber Die Casting
I modsætning hertil, cold-chamber die casting accommodates higher-melting alloys, såsom aluminium (≈ 615 ° C.) og magnesium (≈ 595 ° C.).

Her, manufacturers ladle molten metal into a separate injection chamber for each shot.
Although cycle times extend by 20–30% relative to hot-chamber systems (typisk 20–25 seconds), cold-chamber machines ensure thermal stability and prevent excessive heat exposure of the injection components.
This method dominates aluminum die casting, which accounts for roughly 60% of the market by volume.
Højtryksstøbning (HPDC)
High-pressure die casting represents the industry standard for non-ferrous parts.
By applying injection pressures from 800 til 1,500 bar, HPDC fills intricate dies within 10–30 milliseconds and packs the metal under a brief intensification phase (2–5 sekunder).
Manufacturers leverage HPDC’s capability to produce thin-wall sections (ned til 0.5 mm), komplekse underskæringer, og stramme tolerancer (± 0.1 mm),
making it ideal for automotive transmission cases, consumer-electronics housings, and structural brackets.
Lavtryksstøbning (LPDC)
Low-Pressure Die Casting innovates by gently forcing molten metal upward into the die, using gas pressures of only 0.1 til 0.5 bar, from a sealed furnace below.
This controlled fill reduces turbulence and gas entrapment, giver 30–50% fewer porosity defects than HPDC.
As a transitional technology, LPDC suits medium-volume production of pressure-bearing components,
such as hydraulic valve bodies and aerospace fittings, where material integrity outweighs cycle-time demands.
Tyngdekraft Die Casting
Also known as permanent-mold casting, gravity die casting relies solely on gravity to fill metal into preheated steel molds.
Although slower (cycle times of 1–5 minutes), it delivers superior surface finishes (Ra 0.4–1,6 um) and low porosity.
Manufacturers often choose gravity casting for aluminum and copper parts requiring exceptional fatigue resistance—such as connecting rods and impellers—particularly in low- to medium-volume runs.
Specialized Die-Casting Variants
Endelig, several hybrid processes address niche performance needs:
- Klem casting: Applies static pressure (50–200 MPa) Under størkning,
combining casting and forging to achieve near-100% density and mechanical properties rivaling wrought alloys. - Semi-Solid Die Casting (Thixocasting): Injects a slurry of partially solidified alloy (fraction solid ~ 30–50%), reducing turbulence and die erosion while improving tensile strength by up to 20%.
- Vakuum die støbning: Evacuates air from the die cavity before injection, cutting gas porosity by over 80%—crucial for high-reliability aerospace and medical components.
Die Casting Methods: Sammenlignende oversigt
Type | Almindelige materialer | Fordele | Ulemper | Typiske applikationer |
---|---|---|---|---|
Hot-Chamber Die Casting | Zink, Lead-Based Alloys | • Very fast cycle (≤15 s) • Low injection pressure • Excellent surface detail |
• Limited to low-melting alloys (<450 ° C.) • Corrosive attack on injection components |
Small precision parts (F.eks., Elektriske huse, toy components) |
Cold-Chamber Die Casting | Aluminium, Magnesium, Kobberlegeringer | • Handles high-melting alloys • Better injection-system longevity |
• Slower cycle (20–30 s) • Higher operational complexity and cost |
Automotive blocks, motorbeslag, Strukturelle komponenter |
Højtryksstøbning | Aluminium, Zink, Magnesium | • Thin walls (≥0.5 mm) • Very high throughput |
• High tooling cost • Porosity if not well controlled |
Transmissionssager, consumer electronics housings, hardware parts |
Lavtryksstøbning | Aluminium, Magnesium | • Low porosity (<50% of HPDC) • Good mechanical properties |
• Slower fill (1–5 s) • Higher cycle time (1–2 min) |
Hydraulic valve bodies, aerospace fittings, Trykfartøjer |
Tyngdekraft Die Casting | Aluminium, Kobber | • Excellent surface finish (Ra 0.4–1.6 µm) • Low porosity |
• Slow cycle (1–5 min) • Less suited for very thin walls |
Connecting rods, skader, decorative architectural components |
Specialized Variants | Forskellige (depending on variant) | • Squeeze: ~100% density, høj styrke • Vacuum: ≤20% porosity |
• Squeeze: Dyrt værktøj • Vacuum: costly equipment |
High-performance aerospace, medicinske implantater, structural forgings |
5. Key Materials & Valg af legering
Selecting the right alloy lies at the heart of any die-casting project. Different metals deliver unique combinations of strength, vægt, Korrosionsmodstand, og omkostninger.

Under, we examine the four most common die-casting families—zinc, aluminium, Magnesium, og kobber—highlighting their key properties, relative cost, and sustainability considerations.
Legeringsfamilie | Typiske kvaliteter | Main Characteristics | Ca.. Koste | Typiske applikationer |
---|---|---|---|---|
Zink | ZA-5, ZA-8, ZA-12 | Very high fluidity; Fremragende detaljerede reproduktion; low melting (≈380 °C) | ~ $2.50 /kg | Precision small parts (Gear, Elektriske huse) |
Aluminium | A380, A383, A413 | Good strength-to-weight; Korrosionsbestandig; medium melting (610–650 ° C.) | ~ $2.80 /kg | Bilhuse, Elektroniske indkapslinger |
Magnesium | AZ91D, AM60B, AZ63A | Exceptionally lightweight (≈ 1.8 g/cm³); God rollebesætning; Fair korrosionsbestandighed | ~ $3.50 /kg | Luftfartsbeslag, portable electronics frames |
Kobber | C73500 (Rød messing), C86300 (BRASS), C87610 (Fritskærende messing) | Høj slidstyrke; excellent electrical/thermal conductivity; high melting (≈ 1 016 ° C.) | ~ $8.00–$10.00 /kg | Plumbing fixtures, stik, heat-sink components |
Tin Alloys | B83, B85, B89 | Lavt smeltepunkt; excellent lubricity; God korrosionsmodstand | ~ $4.00 /kg | Lejer, bøsninger, orm gear |
Lead Alloys | L-360, L-380 | Very low melting; God bearbejdelighed; high density | ~ $2.20 /kg | Counterweights, radiation shielding |
6. Udstyr & Værktøj
Robust dies and precise machines ensure process reliability:
- Die Steels: H13 and P20 grades withstand thermal cycling—up to 200,000 shots—while resisting wear and thermal fatigue.
- Mold Design Elements: Integrate slides, lifters, and conformal cooling channels to optimize part quality and cycle time.
- Machine Specs: Clamping force must exceed the calculated injection force; f.eks, -en 200 cm² cavity at 1,000 bar requires at least 2,000 Kn.
Automated part ejection and die lubrication systems further improve repeatability and die life.
7. Procesparametre & Kontrollere
Manufacturers fine-tune key variables to minimize defects:
- Smeltetemperatur: Control within ±5 °C For at sikre ensartet fluiditet.
- Injection Profile: Multi-phase velocity and pressure ramps reduce turbulence and cold shots.
- Die Temperature: Maintain between 150–200 °C using water or oil circuits to balance flowability and die longevity.
- Port & Udluftning: CFD simulations guide placement to avoid air traps and ensure smooth metal flow.
- Statistisk processtyring: Real-time monitoring of pressure, temperatur, and flow reduces scrap rates by up to 50%.
8. Fordele ved støbning
Die casting is one of the most widely used and efficient metal forming processes in modern manufacturing. It offers numerous technical and economic advantages, particularly for high-volume production of complex, precision-engineered parts.

High Dimensional Accuracy and Stability
One of the most significant advantages of die casting is its ability to produce parts with snævre tolerancer and excellent repeatability.
Precision levels of ±0.1 mm for small dimensions and ±0.2% for larger parts are typical. This accuracy minimizes or eliminates post-machining operations, reducing both time and cost.
Datapunkt: According to NADCA (North American Die Casting Association), parts made by die casting can meet ISO 8062-3 Grade DCTG 4 til 6, depending on the alloy and geometry.
Overlegen overfladefinish
Die cast components typically achieve a smooth surface finish directly out of the mold,
often in the range of RA 1,6-6,3 um, which is ideal for decorative parts or components that will be painted or plated.
This eliminates additional finishing steps like grinding or polishing.
Produktion af næsten netto-form
Because of the high precision and design flexibility of die casting, parts can be cast very close to their final dimensions and form.
Tynde vægge (Så lidt som 0.5 mm for zinc and 1.0 mm til aluminium) and intricate internal features (ribben, chefer, tråde) can be integrated into a single cast, minimizing assembly and welding.
Høj produktionseffektivitet
Die casting is exceptionally fast compared to other metal forming methods. Cycle times typically range from 30 seconds to 2 minutter, depending on the part size and complexity.
Combined with multi-cavity tooling and automation, this makes it ideal for mass production.
Strength and Lightweight Potential
Because die cast parts are formed under high pressure, they tend to have superior mechanical properties compared to sand or gravity cast parts.
Legeringer som AZ91D (Magnesium) eller A380 (aluminium) offer a favorable combination of strength and low density, crucial in weight-sensitive industries.
Material Utilization and Low Waste
Die casting minimizes material waste. Since most metal is forced into the cavity, and excess (gates and runners) can be re-melted and reused, scrap rates are often below 5%,
making it environmentally and economically efficient.
Cost Effectiveness at Scale
While die casting involves a high initial tooling investment, it becomes extremely cost-effective at medium to high volumes.
With minimal post-processing and high throughput, de cost-per-unit drops significantly beyond 10,000–20,000 parts.
Automation and Repeatability
Modern die casting machines can be fully automated, including melting, injection, Trimning, and part ejection.
This reduces human error, improves safety, and enhances consistency—especially when integrated with real-time monitoring and control systems.
9. Limitations of Die Casting
På trods af sine styrker, die casting presents challenges:
- High Tooling Costs: Dies range from $20,000 til $150,000, Med ledetider af 8–16 weeks.
- Materielle begrænsninger: Limited to non-ferrous alloys; high-zinc parts suffer brittleness.
- Defect Risks: Porøsitet, cold-shuts, and die wear require vigilant process control.
- Miljøproblemer: Dross formation (1–3% efter vægt) and VOC emissions demand recycling and abatement systems.
10. Kvalitetssikring & Defect Mitigation
To guarantee part integrity, suppliers implement:
- Fælles defekter: Gas and shrinkage porosity, Misruns, og flash.
- Inspektionsmetoder: X-ray radiography uncovers voids ≥ 0.3 mm; ultrasonic testing and pressure decay tests verify pressure-bearing components.
- Corrective Actions: Adjust venting, refine injection parameters, and employ vacuum assist to cut porosity by 30–50%.
11. Applications of Die Casting
Die casting has become an essential manufacturing process across numerous industries due to its ability to produce complex, high-precision components with excellent surface finish and dimensional stability.
From automotive engineering to consumer electronics, the versatility of die casting continues to expand as materials and technology evolve.

Bilindustri
De bilindustrien sector is the largest consumer of die-cast parts globally.
Due to the industry’s constant pursuit of letvægts, Komponenter med høj styrke, Die casting, particularly aluminum and magnesium, er vidt brugt.
Fælles applikationer:
- Transmissionshuse
- Engine blocks and cylinder heads
- Bremsekalipere
- Steering and suspension components
- EV battery enclosures and motor housings
Forbrugerelektronik
Die casting is favored in the electronics industry for manufacturing holdbar, heat-dissipative enclosures that also support sleek, compact designs.
Typical Components:
- Smartphone and tablet frames
- Laptop casings
- Camera and projector housings
- Connectors and RF shielding components
Legeringer som Magnesium (AZ91D) og zink (Zamak series) are often chosen for their light weight, EMI shielding properties, and excellent finish quality.
Rumfart og forsvar
- Fuel system components
- Hydraulic and pneumatic housings
- Gearkassekomponenter
- Electronic enclosures in avionics
Industrial Machinery and Equipment
- Pneumatic and hydraulic tool components
- Gearbox covers
- Mounting brackets and bearing housings
- Valve bodies and actuator parts
Medicinsk udstyr og udstyr
The medical field increasingly uses die casting for producing components that demand nøjagtighed, Korrosionsmodstand, og sterilizability.
- Diagnostic equipment frames
- Surgical instrument handles
- Orthopedic device components
- Enclosures for ventilators and imaging devices
Telecommunications and Infrastructure
- Outdoor enclosures for 5G and fiber-optic systems
- Heat sinks for base station electronics
- Satellite and antenna structural components
Emerging Fields: E-Mobility and IoT Devices
- Battery management system housings
- Compact motor and gearbox casings
- Smart home device enclosures
- Drone frames and UAV components
12. Die Casting vs. Other Manufacturing Processes
Kriterier | Die casting | Investeringsstøbning | Sandstøbning | Injektionsstøbning | CNC -bearbejdning |
---|---|---|---|---|---|
Dimensionel nøjagtighed | Høj (± 0,1 mm); Fremragende gentagelighed | Meget høj (±0.05–0.15 mm) | Moderat (± 0,5–1,0 mm) | Fremragende (±0.02–0.1 mm for plastics) | Ekstremt høj (±0.01 mm possible) |
Overfladefinish | Fremragende (RA 1,6-6,3 um) | Meget god (RA 3,2-6,3 um) | Poor to moderate (Ra 6.3–25 µm) | Excellent for plastics (RA 0,8-1,6 um) | Fremragende (RA 0,8-3,2 um) |
Material Types | Mostly non-ferrous metals (aluminium, zink, Magnesium) | Bred rækkevidde, including steels, Superalloys | Almost all metals, including ferrous | Thermoplastics and thermosets only | Almost all metals and plastics |
Wall Thickness Capability |
Tynde vægge (as low as 0.5 mm for zinc) | Moderat (2–3 mm typical) | Tykke sektioner (4 mm and above) | Very thin possible (<1 mm) | Depends on tool geometry and setup |
Complex Geometry | High complexity possible (ejector and slide use) | Fremragende, including internal features | Begrænset (poor for fine details) | Excellent for plastic parts | Fremragende, but costly for complex geometries |
Værktøjsomkostninger | Høje indledende matrisomkostninger ($10,000–100,000+) | High mold cost, but lower than die casting | Low to moderate mold cost | Høje værktøjsomkostninger | No tooling needed (unless fixturing) |
Produktionsvolumen egnethed | Best for medium to high-volume (>10,000 PCS) | Low to medium volume (1,000–20,000 pcs) | Lav til høj, depending on part | Meget højt volumen (>100,000 PCS) | Low-volume or prototyping |
Cyklustid |
Hurtig (30s–2 min per shot) | Langsom (few hours per cycle) | Langsom (minutes to hours) | Very fast (seconds to minutes) | Langsom (depends on operations) |
Post-processing Requirement | Minimal (often only trimming) | May require machining and finishing | Stor (rensning, bearbejdning) | Minimal (may require deburring) | Often required for final geometry |
Tolerances Achievable | ±0.1 mm typical | ±0.05–0.15 mm | ± 0,5–1,0 mm | ±0.02–0.1 mm (non-metal) | ± 0,01 mm (præcision) |
Materielt affald | Lav (recyclable runners/gates) | Moderat (lost wax and gating system) | Høj (mold material not reusable) | Meget lav (sprue and runners recyclable) | Høj (material removal process) |
Miljøovervejelser |
Moderat: Energy-intensive, but recyclable metals | Energi- and labor-intensive, generates wax and ceramic waste | High dust, Sandaffald, energy use | Plastic waste, some recyclable | Brug af høj energi, waste chips |
Eksempel applikationer | Bilhuse, Forbrugerelektronik, elværktøj | Aerospace turbine blades, smykker, high-strength structural parts | Motorblokke, Pumpehuse, rør | Plastic enclosures, legetøj, medical housings | Luftfartsdele, Forme, custom tooling |
Summary Insights
- Die casting offers a strong balance between hastighed, præcision, og omkostningseffektivitet for non-ferrous metal parts at scale.
- Investeringsstøbning excels in producing complex geometries and high-performance alloys but is more labor-intensive and slower.
- Sandstøbning remains cost-effective for stor, heavy parts and short runs, but lacks precision.
- Injektionsstøbning dominates in plastic parts manufacturing, offering unmatched throughput and precision for polymers.
- CNC -bearbejdning leverer ultimate precision and flexibility, though at higher unit costs and slower speeds.
13. Konklusion
Sammenfattende, die casting stands at the intersection of speed, præcision, og skalerbarhed.
By mastering process control, Valg af materiale, and die design, manufacturers produce high-quality, cost-effective parts that drive innovation from automotive assemblies to consumer electronics.
As Industry 4.0 introduces IoT-enabled monitoring, AI-driven optimization, and hybrid additive tooling, die casting will continue to evolve—maintaining its role as a strategic enabler of mass-production excellence.
På Langhe, Vi er klar til at samarbejde med dig i at udnytte disse avancerede teknikker til at optimere dine komponentdesign, Valg af materiale, og produktionsarbejdsgange.
At sikre, at dit næste projekt overstiger enhver ydelse og bæredygtigheds benchmark.
FAQS
How Does Hot Chamber Die Casting Differ from Cold Chamber Die Casting?
- Answer: In hot chamber die casting, the injection system is immersed in molten metal, which allows for faster cycle times but is limited to lower melting point metals.
Cold chamber die casting involves ladling molten metal into the injection system, making it suitable for higher melting point metals but slower in operation.
What Factors Affect the Cost of Die Casting?
- Answer: Værktøjsomkostninger, material costs, complexity of the part design, volume of production, and post-processing requirements all impact the overall cost.
How Do You Control Quality in Die Casting?
- Answer: Quality control involves monitoring key parameters such as melt temperature, injection profile, die temperature, port, udluftning, and using statistical process control (SPC).
Real-time monitoring helps reduce defects and improve consistency.
What Is the Role of Mold Design in Die Casting?
- Answer: Proper mold design incorporates features like slides, lifters, and conformal cooling channels to optimize part quality and cycle time.
It also ensures efficient filling and solidification while minimizing defects.