Rediģēt tulkojumu
pie Transposh - translation plugin for wordpress
A360 alumīnija sakausējuma liešanas LED gaismas korpuss

A360 alumīnija sakausējums: Augstāka korozijas die-liešanas šķīdums

1. Ievads

A360 aluminum alloy occupies a central role in modern high-pressure die casting, prized for its combination of fluidity, izturība, un izturība pret koroziju.

By offering an optimal balance of mechanical performance and castability, A360 has become an industry standard for automotive, jūras, and consumer-electronics components.

Līdz ar to, engineers and material scientists must understand its composition, behavior during manufacturing, in-service characteristics, and overall economic value.

This article covers A360’s metallurgical foundation, fizikālās īpašības, mehāniskā veiktspēja, korozijas uzvedība, die-casting considerations, post-processing requirements, un pieteikumi.

2. Alloy Composition of Aluminum Alloy A360

Alumīnija sakausējums A360 is a high-pressure die-casting alloy designed to balance šķidrums, mehāniskā izturība, un izturība pret koroziju.

Its composition places it—chemically—near ADC12 (sometimes called A383 in North America) but with slightly higher magnesium to improve corrosion performance.

A360 sūkņa ķermeņa daļas
A360 sūkņa ķermeņa daļas

Below is the typical chemical breakdown (all values in weight percent):

Elements Tipisks kompozīcija (wt %) Role/Effect
Alumīnijs (Al) Līdzsvars (~90–93 %) Primary matrix; provides lightweight structure and ductility
Silīcijs (Un) 9.5 - 10.5 % Uzlabo plūstamību, pazemina kausēšanas punktu, reduces shrinkage porosity
Magnijs (Mg) 0.45 - 0.70 % Improves corrosion resistance, participates in Mg₂Si precipitates for strength after aging
Varš (Cu) 2.50 - 3.50 % Cieta šķīduma stiprināšana; enhances tensile/yield strength when aged
Cinks (Zn) 2.00 - 3.00 % Provides additional solid-solution strengthening; improves elevated‐temperature performance
Dzelzs (Fe) ≤ 1.30 % Impurity that forms Fe-rich intermetallics; excessive Fe can reduce ductility and promote pitting
Mangāns (Nojaukšanās) 0.35 - 1.00 % Darbojas kā graudu rafinētājs, reduces coarse intermetallics, slightly enhances pitting resistance
Litijs (Lich) ≤ 0.07 % (In some variants) Reduces density, marginally increases stiffness (not typical for standard A360)
Titāns (No) ≤ 0.10 % Grain refiner (via Ti-B master alloys), controls microstructure
Niķelis (Iekšā) ≤ 0.10 % Kontrolēts piemaisījums; avoids embrittlement and hot cracking
Alvas (Sn) ≤ 0.10 % Kontrolēts piemaisījums; excessive Sn can embrittle
Svins (Pbe) ≤ 0.10 % Kontrolēts piemaisījums; līdz minimumam, lai izvairītos no Emplitlement

3. Fizisks & Termiskās īpašības A360 Alumīnija sakausējums

Īpašums Novērtēt Vienības Piezīmes
Blīvums 2.74 G/cm³ Aptuveni viena trešdaļa tērauda blīvuma
Siltumvadītspēja 120 Ar m/m · k Atvieglo siltuma izkliedi siltuma izlietnēs un korpusos
Termiskās izplešanās koeficients (Cte) 21.5 µm/m · ° C Aptuveni divreiz vairāk nekā tērauda; Svarīgs dimensiju dizainam
Kušanas diapazons (Ciets-šķidrums) 570 - 585 ° C Šaurais intervāls nodrošina labu plūstamību un kontrolētu sacietēšanu
Šķidrums (Pārbaudīts HPDC apstākļos) 200 - 250 mm (plūsmas garums) Var aizpildīt a 1 MM sadaļa līdz 200–250 mm zem 70 MPA spiediens
Īpaša siltuma jauda 0.90 J/g · ° C Nepieciešama mērena enerģija, lai paaugstinātu temperatūru
Elektriskā vadītspēja 32 - 35 % IACS Salīdzināms ar citiem Al - Si - Mg liešanas sakausējumiem
Sacietēšanas saraušanās 1.2 - 1.4 % Zema saraušanās AIDS Izmēra precizitāte die-cast komponentos

4. Mehāniskās īpašības A360 Alumīnija sakausējums

Īpašums Tikpat ietērpts (T0) T5 (Vecs) Vienības Piezīmes
Stiepes izturība (Σīgs) 260 - 300 320 - 360 MPA (37 - 44 ksi / 46 - 52 ksi) Novecošana izraisa mg₂si nokrišņus, Spēka palielināšana par ~ 20 %.
Peļņas izturība (0.2% σy) 150 - 170 200 - 230 MPA (22 - 25 ksi / 29 - 33 ksi) Augstāka raža pēc T5 atļauj plānākas sekcijas ar vienādu slodzi.
Pagarināšana (%) 2 - 4 4 - 6 % Liekums uzlabojas nedaudz ar T5 novecošanos, jo mikro-preCitites uzlabo dislokācijas kustību.
Brinela cietība (HBW) 65 - 85 85 - 100 HB Hardness increase reflects fine Mg₂Si dispersion; benefits wear resistance in machined parts.
Fatigue Endurance Limit ~ 100 ~110 MPA Endurance at 10⁷ cycles under rotating bending; T5 yields slight improvement.
Šļūdes ātrums (50 MPa @ 100 ° C) ~1 %/10³ h ~0.8 %/10³ h % strain in 10³ h Creep becomes significant above 100 ° C; T5 marginally lowers creep rate.

5. Izturība pret koroziju & Uzvedība virsmai

Vietējā pasīvā filma (Al₂o₃)

Pure aluminum and its alloys naturally form a thin (2–5 nm) amorphous Al₂O₃ layer within seconds of air exposure.

This adherent film self-heals when scratched, thereby preventing further oxidation.

In static, neutral pH conditions, bare A360 typically exhibits corrosion rates below 5 µm/year,

rendering it more durable than most uncoated steels.

Customized A360 Aluminum Alloy Hinge
Customized A360 Aluminum Alloy Hinge

Lobīšana & Plaisas korozija

In chloride-laden environments—such as seaside or deicing conditions—korozija can initiate where Cl⁻ ions breach the passive layer.

In ASTM B117 salt-spray tests, unprotected A360 samples often begin to show small pits after 200–300 hours pie 5% NaCl, 35 ° C.

Turpretī, jūras kvalitāte 5083 performs beyond 1 000 laiks. Tādējādi, protective coatings or anodizing become mandatory for sustained marine exposure.

Līdzīgi, plaisas korozija can develop under gaskets or shadowed areas, where localized acidification lowers the pH below 4, further destabilizing the oxide.

Design solutions include ensuring tight tolerances for proper drainage and using non-porous sealants.

Aizsardzības procedūras

  • Anodēšana (Type II and Type III): Sulfuric-acid anodizing builds oxide layers of 5–25 µm (II tips) vai 15–50 µm (hard-anodize Type III).
    Sealing with nickel acetate or polymer-based sealers imparts additional protection, extending salt-spray resistance to over 500 laiks without pit initiation.
  • Konvertācijas pārklājumi: Chromate conversion (Iridite) and non-chromate alternatives (Piem., zirconium-based) create a thin,
    <1 µm barrier that both primes the surface and inhibits initial corrosion.
  • Organiski pārklājumi: Epoxy primers combined with polyurethane or fluoropolymer topcoats achieve
    pāri 1 000 laiks in salt-spray testing, provided surface prep (caustic etch and deoxidizing) is strictly followed.

Galvaniska mijiedarbība

Aluminum’s position in the galvanic series makes it anodic to many structural metals—copper, nerūsējošais tērauds, and even titanium.

In a humid or wet electrolyte, galvanic couples can drive A360 corrosion at a rate of 10–20 µm/year when in direct contact with copper. To mitigate galvanic action, best practices include:

  • Isolation: Nylon or polyamide washers between aluminum and steel fasteners.
  • Pārklājumi: Applying a protective layer on at least one of the metals.
  • Projektēšana: Avoiding dissimilar-metal stacks or ensuring minimal electrolyte entrapment.

6. A360 alumīnija sakausējuma liešanas īpašības

When it comes to high-pressure die castingan (HPDC), A360 aluminum stands out due to its exceptional fluidity, sacietēšanas uzvedība, and overall castability.

A360 Aluminum Alloy High Pressure Die Casting Heatsink
A360 Aluminum Alloy High Pressure Die Casting Heatsink

Uzvedības un plūstamība

Pirmkārt un galvenokārt, the high silicon content of A360 imparts a low melting temperature and a broad semi-solid interval,

translating into outstanding fluidity under typical HPDC parameters (liquidus at ~585 °C, solidus at ~570 °C). Rezultātā:

  • Plānas sienas iespējas: In standard die-casting trials, A360 can fill wall thicknesses as low as 1.0 mm along a straight flow length of 200–250 mm when injected at 70–90 MPa and plunger speeds of 1.5–2.0 m/s.
  • Reduced Cold-Shut Risk: The alloy’s low viscosity under pressure minimizes premature freeze-off, decreasing cold-shut defects by over 30 % compared to lower-Si alloys like A380.

Turklāt, because A360’s solidification range is relatively narrow, mold designers can define runners and gates that promote uniform flow.

Piemēram, izšķirt 0.5 mm increase in gate cross-section (no 5 mm² to 5.5 mm²) often yields 10 % faster fill times, reducing the likelihood of laps or misruns.

Saraušanās un sacietēšanas kontrole

Blakus, A360’s nominal shrinkage rate of 1.2–1.4 % on solidification requires careful die design to prevent shrink-age porosity. To counteract this:

  • Virziena sacietēšana: Strategic placement of drebuļi—copper inserts or beryllium-copper sleeves—at thick sections locally accelerates cooling.
    Praksē, adding a 2 mm thick copper chill adjacent to a 10 mm base reduces the local solidification time by 15–20 %, directing feed metal toward high-risk regions.
  • Sequential Feeding: Employing multiple, staged gates can allow molten A360 to feed thick bosses last, ensuring that these areas remain liquid until final solidification.
    Simulation data often shows that a two-gate design reduces shrink-void volume by 40 % relative to a single-gate layout.
  • Vacuum-Assist Techniques: Drawing a vacuum of 0.05 MPA beneath the shot sleeve decreases entrapped air, permitting denser feed metal.
    Trials demonstrate that vacuum HPDC lowers porosity from ~3 % to less than 1 % pēc tilpuma, improving tensile strength by 10 MPA on average.

Porainības mazināšana un kvalitātes nodrošināšana

Although A360’s rapid heat extraction promotes fine microstructures, it can also generate gas and shrinkage porosity if not controlled. Common mitigation strategies include:

  • Gas-Flush Nozzles: By introducing an inert gas pocket behind the shot piston, gas-flush systems mobilize and expel dissolved hydrogen from the melt.
    In A360 pilot runs, gas-flush reduced hydrogen content from 0.15 mL/100 g Al līdz 0.05 mL/100 g Al, cutting gas-porosity by over 60 %.
  • Plunger Acceleration Profiles: A steeper acceleration ramp (Piem., 0.5 m/s² to 2.0 m/s² within the first 15 mm) improves turbulence-controlled filling, minimizing stagnant zones that trap air.
    Data show that this profile change alone can lower pore counts in critical tension areas by 20 %.
  • Die Temperature Management: Maintaining die temperatures between 200 ° C un 250 ° C ensures that the surface does not freeze too rapidly.
    Thermocouple monitoring in key die zones can keep temperature fluctuations within ±5 °C, reducing surface-freeze defects responsible for surface porosity.

Quality assurance further relies on automated X-ray radiography vai CT skenēšana to detect pores ≥ 0.5 mm.
For mission-critical automotive parts, an allowable pore volume of < 0.3 % is often set; contemporary metrology techniques report over 95 % detection rates for such criteria.

Instrumentu nodilums un uzturēšana

While A360’s silicon content (9.5–10.5 %) enhances fluidity, those hard Si-particles also accelerate die wear. Līdz ar to:

  • Tool Steel Selection: Augstas kvalitātes H13 vai H11 alloys are standard, but coating them with Alvas vai Dimantam līdzīgs ogleklis (DLC) Samazina berzi.
    Ražošanā, TiN coatings have extended mold life by 25–30 %, from an average of 150 000 shots uz pāri 200 000 shots before requiring refurbishment.
  • Die Surface Finishing: Polishing die cavities to Ra < 0.2 µm minimizes adhesion of solidifying aluminum, reducing soldering and galling.
    Polished dies also require fewer ejection pins and less spray lubricant—cutting maintenance time by 10–15 %.
  • Preventive Maintenance Intervals: Based on cumulative fill cycles and X-ray feedback, foundries often implement die servicing every 50 000–75 000 shots.
    This schedule typically involves re-polishing, re-coating, and inspecting for micro-cracks using fluorescent penetrant methods.

7. Mašīnīgums & Pēcapstrāde

Apstrādes īpašības

A360’s 9.5–10.5% silicon content yields a combination of moderate hardness and brittle silicon phases. Līdz ar to:

  • Instrumentus: Use carbide tooling (grades K20–P30) with sharp geometries and positive rake angles to manage chip control.
  • Parametru griešanas: Speeds of 250–400 m/min, feed rates of 0.05–0.2 mm/rev, and moderate depth of cut (1–3 mm) deliver optimal balance between tool life and surface finish.
  • Dzesēšanas šķidrums: Flood cooling with water-based emulsions or synthetic coolants is recommended to remove heat and lubricate the tool–workpiece interface.
  • Motor end cover aluminum alloy A360 die-castings
    Motor end cover aluminum alloy A360 die-castings

Urbšana, Pieskarties, un pavedienu veidošana

  • Urbšana: Utilize peck-drilling (retracting every 0.5–1.0 mm) to evacuate chips and avoid built-up edge.
  • Pieskarties: Employ spiral-flute taps for through-holes; select base hole sizes per ISO 261 (Piem., #10–24 tap uses a 0.191 iekšā. pre-drill).
  • Thread-Forming: In softer A360 sections (T0), thread rolling can produce stronger threads than cutting but requires precise pilot holes.

Pievienošanās metodes

  • Metināšana: A360’s high heat input can exacerbate porosity; tā, Gāzes volframa loka metināšana (Gtaw) with filler rod 4043 (Al–5Si) vai 5356 (Al–5Mg) is preferred.
    Preheating to 100–150 ° C can reduce thermal gradients but is not always necessary.
  • Cietlodēšana un lodēšana: A360 joints are commonly brazed using aluminum brazing rods containing 4–8% silicon.
    Flux selection is critical—zinc-based fluxes can dissolve the passive film and ensure wetting.

8. Lietojumprogrammas & Nozares piemēri

Automobiļu sektors

A360 dominates applications requiring lightweight, complex geometries with moderate mechanical loads. Piemēri ietver:

A360 Aluminum Alloy steering gear parts
A360 Aluminum Alloy steering gear parts
  • Transmisijas korpusi: Replacing ductile iron, A360 housings weigh 30–40% less while delivering comparable static strength (≥ 300 MPA stiepes).
  • Engine Brackets and Mounts: Die-cast A360 brackets can reduce part count by integrating bushings and mounts,
    lowering total assembly weight by 1.5 kg per vehicle.
  • Gadījuma izpēte: A major OEM replaced a gray-iron transmission tail housing (weighing 4.5 kg) with an A360 die-cast unit (3.0 kg),
    taupīšana 1.5 kg and cutting production costs by 12% due to shorter cycle times and reduced machining.

Jūras & Jūras komponenti

Marine-grade A360, Kad anodēts, resists corrosion in saltwater environments:

  • Boat Hardware: Eņģes, cleats, and trim pieces manufactured in A360 sustain 200 laiks in ASTM B117 salt-spray testing without visible pitting.
  • Submerged Pump Casings: A360 pumps for bilge and livewell applications can operate at 5 m depth par pāri 5 gadiem with routine anodizing maintenance every 2 gadiem.

Patēriņa elektronika & Iežogojums

A360’s combination of thermal conductivity and form accuracy suits heat sinks and housings:

  • LED Lamp Housings: The alloy’s thermal conductivity (120 Ar m/m · k) helps dissipate up to 20 W per housing, preventing LED lumen depreciation.
  • Telecom Racks and Enclosures: EMI-shielded A360 extrusions achieve 50 dB attenuation at 1 GHz, while remaining cosmetically attractive after anodizing.

Rūpniecisks & HVAC

  • Compressor Housings: HVAC sistēmās, A360 housings operate continuously at 100 ° C and sustain 5000 laiks of cyclic temperature changes between –20 °C un 100 ° C with less than 0.2% rāpot.
  • Heat Exchanger End Caps: A360’s dimensional accuracy (± 0.1 mm in thin walls) allows leak-free sealing with O-rings in condensers and evaporators.

9. Salīdzinājums ar citiem liešanas sakausējumiem

When specifying a Lāses sakausējums, A360 often competes with several well-established materials—most notably A380 (ADC10), ADC12 (A383), A413, A356, un LM6.

Each alloy offers distinct advantages in terms of fluidity, mehāniskā izturība, izturība pret koroziju, un izmaksas.

Sakausējums As-Cast Tensile (MPA) T5/T6 Tensile (MPA) Šķidrums (1 mm, mm) Izturība pret koroziju Diew nodilums Primary Applications
A360 260–300 320–360 (T5) 200–250 Ļoti labs (with anodize) Augsts (10–15 %) Jūras sūkņi, automobiļu kronšteini
A380 240–280 300–340 (T5) 180–200 Mērens (Nepieciešams pārklājums) Mērens (8–12 %) General-purpose housings
ADC12 250–300 300–340 (T5) 220–240 Labi (with anodize) Mērens (10–12 %) Automobiļu kronšteini, iežogojums
A413 230–260 280–320 (T5) 240–260 Labi (low Cu) Ļoti augsts (12–15 %) Hidrauliskie cilindri, Degvielas sistēmas detaļas
A356 200–240 310–340 (T6) 180–200 Ļoti labs (low Cu) Apakšējais (6–8 %) Aviācijas un kosmosa lējumi, HVAC komponenti
LM6 220–260 300–340 (T6) 260–280 Lielisks (minimāls ar) Ļoti augsts (12–15 %) Jūras piederumi, architectural parts

10. Jaunās tendences & Turpmākie virzieni

Uzlaboti sakausējuma varianti

  • Nanoparticle-Reinforced A360: Incorporation of SiC or TiB₂ nanoparticles aims to enhance wear resistance and reduce thermal expansion.
    Preliminary studies show up to 15% improvement in hardness without sacrificing fluidity.
  • Low-Copper A360 Variants: By reducing Cu to < 1.5%, next-generation alloys maintain age-hardening capability while further improving corrosion resistance, particularly for coastal infrastructure.

Piedevu ražošanas sinerģijas

  • Hybrid Die-Cast/3D-Printed Tools: Additive manufacturing of conformal cooling channels in die inserts reduces cycle times by 10–15% and yields more consistent microstructures in A360 castings.
  • Direct Metal Deposition (DMD) Repairs: Using A360 powder, DMD restores worn HPDC dies, extending die life by 20–30% and lowering tooling costs.

Digitālā ražošana & Rūpniecība 4.0

  • Reālā laika procesa uzraudzība: Embedding thermocouples and pressure sensors in dies,
    combined with AI algorithms, predicts porosity hotspots, thus reducing scrap by 5–8%.
  • Paredzamā apkope: Machine-learning models correlate die temperature profiles with wear patterns, scheduling maintenance only when necessary, improving uptime by 12%.

11. Secinājumi

Alumīnija sakausējums A360 stands out in die casting for its Lieliska plūstamība, balanced mechanical properties, un Uzlabota izturība pret koroziju compared to some other die-casting alloys.

While not ideal for extreme marine immersion without additional protection,

it excels in automotive, rūpniecisks, and consumer applications requiring thin walls, mērena izturība, un dimensiju precizitāte.

Pareiza termiskā apstrāde, virsmas apdare, and design for manufacturability ensure that A360 delivers reliable, Ilgstoša izrāde.

Pie LangHe, Mēs esam gatavi sadarboties ar jums, izmantojot šos uzlabotos paņēmienus, lai optimizētu jūsu komponentu dizainu, materiālu atlase, un ražošanas darbplūsmas.

Nākamais projekts pārsniedz katru veiktspējas un ilgtspējības etalonu.

Sazinieties ar mums šodien!

 

FAQ

Kas ir A360 alumīnija sakausējums?

A360 is a high-pressure die-casting alloy characterized by approximately 9.5–10.5 % silīcijs, 0.45–0.70 % magnijs, 2.5–3,5 % vara, and 2–3 % cinks.

It balances exceptional fluidity with good corrosion resistance and strength, making it ideal for thin-wall, complex die-cast components.

Kāda termiskā apstrāde prasa A360?

  • Risinājumu ārstēšana (Izvēlīgs): 525–535 °C for 4–6 h, then water quench.
  • T5 Artificial Aging: 160–180 °C for 4–6 h. This causes Mg₂Si precipitates to form, raising tensile strength by ~15–20 % and hardness by ~20 HB.
    Pārmērīgs (exceeding 6 h or 180 ° C) can coarsen precipitates and reduce strength.

Kādas ir A360 tipiskās apstrādes ražas un dzīves cikla izmaksas?

  • HPDC Yield: Net-shape yields of 90–95 %; scrap after trimming 5–10 %. Vac-assist and optimized gating can reduce scrap to < 3 %.
  • Dzīves cikla izmaksas: Anodized A360 outperforms painted steel for outdoor parts: maintenance every 3–5 years (anodize) vs. annual repaint (tērauds).
    Recycled A360 scrap value $1.50–$2.00/kg versus steel at $0.15/kg.

Atstājiet komentāru

Jūsu e -pasta adrese netiks publicēta. Nepieciešamie lauki ir marķēti *

Ritiniet līdz augšai

Saņemiet tūlītēju citātu

Lūdzu, aizpildiet savu informāciju, un mēs ar jums nekavējoties sazināsimies.