A fordítás szerkesztése
által Transposh - translation plugin for wordpress
1.4122 Rozsdamentes acél | X39CrMo17-1

1.4122 Rozsdamentes acél | X39CrMo17-1

1. Bevezetés

1.4122, commonly referenced by its European designation X39CrMo17-1, is a martensitic chromium stainless steel designed to deliver a blend of keménység, wear resistance and reasonable corrosion performance.

It occupies a practical middle ground between tool steels and corrosion-resistant stainless grades: hardenable by heat treatment to high strengths and abrasion resistance, yet offering better resistance to corrosion than many carbon steels.

2. Mi az 1.4122 Rozsdamentes acél

1.4122 (más néven is hívott X39CrMo17-1) a martensitic chromium rozsdamentes acél — a hardenable, magnetic stainless grade designed to deliver a balance of high hardness/wear resistance és mérsékelt korrózióállóság.

Engineers choose 1.4122 for components that require sharp edges and durable cutting surfaces (Evőeszköz), precision shafts and spindles, wear parts and certain valve or pump components where moderate corrosion resistance is adequate.

It is distinct from austenitic stainless steels (PÉLDÁUL., 304) that are non-magnetic and highly corrosion-resistant, and from ferritic grades that are not hardenable by quenching;

1.4122’s defining characteristic is its martensitic microstructure after quenching, which produces high hardness and strength.

1.4122 Rozsdamentes acél termékek
1.4122 Rozsdamentes acél termékek

3. Kémiai összetétele 1.4122 Rozsdamentes acél

Below is a clean, professional table showing the chemical composition ranges for 1.4122 (X39CrMo17-1) stainless steel together with a concise, engineering-focused description of the role each element plays in this alloy.

Elem Hatótávolság (tömeg%) Primary role(S) — concise
C (Szén) 0.33–0.45 Main hardening agent — increases martensite hardness and wear resistance; reduces toughness and weldability at high levels.
CR (Króm) 16.5–17.5 Provides corrosion passivity and contributes to hardenability and carbide formation.
MO (Molibdén) 0.80–1.30 Improves hardenability, strength and resistance to localized corrosion.
-Ben (Nikkel) ≤1.00 Minor toughness aid; kept low to retain martensitic response.
MN (Mangán) ≤1.50 Deoxidizer and mild hardenability aid.
És (Szilícium)
≤1.00 Deoxidizer and modest solid-solution strengthener.
P (Foszfor) ≤0.04 Impurity — kept low to avoid embrittlement and fatigue loss.
S (Kén) ≤0,015 Minimized (not a free-machining grade) because it lowers toughness and fatigue performance.
FE (Vas) Egyensúly Matrix element — forms the martensitic steel base.
Trace elements (-Y -az, V, CU, N, stb.) jellemzően <0.05–0.20 Small micro-alloying effects or tramp elements; can refine grain or slightly modify properties when present.

4. Mechanikai tulajdonságai 1.4122 Rozsdamentes acél

Mechanical properties vary with heat treatment state. Below are representative ranges used for design guidance.

1.4122 Stainless Steel Bearing Outer Race
1.4122 Stainless Steel Bearing Outer Race
Állapot / treatment Keménység (HRC) Szakítószilárdság (UTS, MPA) 0.2% Proof / Hozam (MPA) Meghosszabbítás (A, %) Charpy v-tootch (kb., J)
Puha / normalizált (delivery) ~20–30 HRC ~500–700 MPa ~300–450 MPa 10–18 % 30–60 J
Eloltott & tempered → ~40 HRC (typical engineering temper) ≈38–42 HRC ~800–950 MPa ~600–800 MPa 8–12 % 15–30 J
Eloltott & tempered → ~48–52 HRC (nagy keménység) ≈48–52 HRC ~1,000–1,300 MPa ~800–1,100 MPa 3–8 % 5–20 J
Maximum hardening (közel 55+ HRC) >55 HRC >1,300 MPA magas (approaching UTS) alacsony (<3 %)* alacsony (<10 J)

5. Magnetic and Physical Properties of 1.4122 Rozsdamentes acél

Understanding the magnetic and physical properties of 1.4122 stainless steel is critical for design engineers, particularly when specifying components for precision machinery, szerszámkészítés, or applications where thermal expansion and conductivity matter.

Ingatlan Tipikus érték Mérnöki következmények
Sűrűség 7.75–7.80 g/cm³ Weight calculations, dynamic load, alkatrész tervezés
Hővezető képesség 19–24 w/m · k Heat dissipation, machining and thermal distortion
Termikus tágulási együttható 10–11 ×10⁻⁶ /K Dimensional stability under thermal cycles
Fajlagos hő ~ 460 J/kg · K Thermal management during processing
Mágneses viselkedés Ferromágneses Consider in sensor proximity, electronic interference, magnetic assembly

6. Korrózióállóság

1.4122 stainless steel provides mérsékelt korrózióállóság, superior to plain carbon steels but inferior to austenitic stainless steels.

Environments where it performs acceptably

  • Fresh water and mildly oxidizing industrial atmospheres
  • Organic acids and mild chemical environments, when polished or passivated

Korlátozások

  • Not recommended for kloridban gazdag környezet (tengervíz, sóoldat) where pitting and crevice corrosion become significant.
  • Localized corrosion resistance decreases with increasing hardness and tempering that expose microstructural heterogeneities.

Surface finishing and passivation

  • Polírozás to a fine finish and kémiai passziváció (PÉLDÁUL., nitric acid treatment) improve corrosion performance by strengthening the passive film.
  • Bevonatok (festék, galvanizálás) or cathodic protection are common for long service life in marginal environments.

7. Heat Treatment and Hardening

Hőkezelés tailoring is central to using 1.4122 hatékonyan.

Typical hardening schedule

  1. Austenitizálás: heat to roughly 980–1020 °C (typical range for martensitic stainless steels; exact temperature depends on section size and furnace control) to form austenite.
  2. Eloltás: rapid cooling in oil or polymer quench to transform to martensite. Water quenching may be used but increases risk of distortion and cracking.
  3. Edzés: reheat to 150–600 ° C depending on required final hardness/toughness balance.
    Lower temper temperatures yield higher hardness and lower toughness; higher temp yields lower hardness but better ductility and impact resistance.

Hardening response

  • Carbide-forming elements (CR, MO) and carbon content drive hardenability. 1.4122 exhibits good response allowing designers to select temper cycles for specific mechanical targets.

Hatások

  • Strength increases dramatically after quench and temper.
  • Szívósság can be restored partially by tempering; there is a well-known tradeoff between hardness and toughness.
  • Megmunkálhatóság generally worsens after hardening; most machining is done in annealed or partially tempered conditions.

8. Machinability and Fabrication

1.4122 Stainless Steel Bearing Valve Seat
1.4122 Stainless Steel Bearing Valve Seat

Megmunkálhatóság

  • Medium in annealed condition. In soft condition, 1.4122 machines comparable to other martensitic grades with appropriate tooling and cutting speeds.
    Use sharp high-speed tooling, adequate coolant and conservative feeds when machining hardened portions.
  • Poor when hardened. Keménység >45 HRC substantially increases tool wear; grinding and carbide tooling are typical.

Hegesztés

  • Korlátozott. High carbon and martensitic structure make the steel susceptible to hydrogen-induced cold cracking. Welding generally requires:
    • Előmelegít (PÉLDÁUL., 150–250 °C depending on thickness)
    • Low hydrogen electrodes
    • Post-weld tempering or PWHT to relieve residual stresses and soften the HAZ
    • For critical parts, welding is avoided or performed with post-weld heat treatment.

Alakítás

  • Hideg formázás: limited in hardened state; better to form in annealed condition and then harden.
  • Forró formázás: may be used within controlled windows but requires subsequent heat treatment to restore designed properties.

9. Előnyök és korlátozások

Előnyei 1.4122 Rozsdamentes acél

  • Jó keményíthetőség: can be heat treated to a wide range of hardness and strength values.
  • Balanced corrosion resistance: superior to carbon steels in many environments.
  • Kopásállóság: suitable for cutting edges, shafts and lightly loaded wear parts.
  • Mágneses: useful where ferromagnetic behaviour is needed.

Korlátozások 1.4122 Rozsdamentes acél

  • Weldability limitations — requires preheat and PWHT for critical joins.
  • Cold formability: poor in hardened state; must be formed in annealed condition.
  • Corrosion limits: not recommended for seawater or high chloride environments without protective measures.
  • Machining when hardened: high tool wear, special tooling required.

10. Ipari alkalmazásai 1.4122 Rozsdamentes acél

1.4122 is used where a combination of nagy felületi keménység, kopásállóság, és mérsékelt korrózióállóság szükségesek:

1.4122 Stainless Steel Safety Valve
1.4122 Stainless Steel Safety Valve
  • Cutlery and surgical tools: kés, scissors and razors benefit from the balance of hardness and stainless behaviour.
  • Mechanical engineering: tengelyek, orsók, pins and small gears that require precision, edge retention and good wear lifetime.
  • Pumps and valves: szár, seats and components exposed to fresh water or buffered fluids.
  • Tooling and molds: for polymer processing and light tooling duties where corrosion resistance is helpful compared with plain tool steels.
  • Other niche uses: futóverseny, small structural components, and certain fasteners where hardness and magnetic response are advantageous.

11. Comparison with Related Stainless Steels

1.4122 (X39CrMo17-1) a martensitic chromium stainless steel with balanced hardness, korrózióállóság, and wear properties.

To guide material selection, it is helpful to compare it with other commonly used martensitic and chromium stainless steels, beleértve 1.4034 (X46Cr13) és 1.4112 (X90CrMoV18).

Ingatlan / Ötvözet 1.4122 (X39CrMo17-1) 1.4034 (X46Cr13) 1.4112 (X90CrMoV18) Engineering Notes
Szén (C) 0.36–0.44% 0.42–0.50% 0.85–0.95% Carbon controls hardness and wear resistance; higher C increases hardness but reduces ductility.
Króm (CR) 16–18% 16–18% 16–18% Chromium provides corrosion resistance; all three are martensitic grades with moderate corrosion resistance.
Molibdén (MO) 0.8–1,2% 0–0.2% 0.8–1,2% Mo improves pitting and general corrosion resistance, Különösen 1.4122 és 1.4112.
Vanádium (V) Nyom Nyom 0.1–0,3% V increases hardness and wear resistance, felhasznált 1.4112 for high-wear tools.
Szakítószilárdság (MPA) 800–1100 (eloltott & temperált) 700–1000 1000–1400 1.4112 is a high-carbon grade designed for maximum wear; 1.4122 balances strength and toughness.
Keménység (HRC)
50–55 48–52 56–60 1.4112 achieves higher hardness due to higher carbon; 1.4122 suitable for tooling and shafts.
Korrózióállóság Mérsékelt Mérsékelt Mérsékelt vagy alacsony 1.4122’s Mo addition improves resistance to mild oxidizing environments over 1.4034.
Megmunkálhatóság Mérsékelt Szegény Nagyszénű 1.4112 is more difficult to machine; 1.4122 balances machinability with hardness.
Tipikus alkalmazások Evőeszköz, szerszámkészítés, szivattyú tengelyek, szelepek Evőeszköz, műtéti eszközök, mechanikus alkatrészek High-wear tools, kés, industrial blades Selection depends on required hardness, korrózióállóság, and machining constraints.

12. Következtetés

1.4122 (X39CrMo17-1) is a practical martensitic stainless steel that provides a versatile combination of keménység, wear resistance and moderate corrosion resistance.

Its capability to be tailored through heat treatment makes it a go-to choice for cutlery, tengelyek, valve parts and tooling applications where a compromise between stainless behaviour and high hardness is required.

GYIK

What is the typical hardness range achievable for 1.4122 rozsdamentes acél?

In delivery/softened condition about 27–33 HRC. After quench and temper the alloy can be adjusted typically to ~40–55 HRC depending on tempering temperature and section size.

Az 1.4122 stainless steel suitable for seawater service?

No — it has only moderate chloride resistance. For seawater or highly corrosive environments, select duplex or austenitic stainless steels with superior pitting resistance.

Can I weld 1.4122 rozsdamentes acél alkatrészek?

Welding is possible but challenging. Use preheat, low-hydrogen consumables and post-weld tempering to avoid cracking and restore toughness.

How does heat treatment affect toughness?

Tempering at higher temperatures improves toughness but reduces hardness. Select tempering temperature to achieve the required balance for fatigue and impact loads.

What is a common substitute if 1.4122 stainless steel is unavailable?

Az alkalmazástól függően, 1.4034 may be an economical substitute for lower performance needs; 1.4112 or other high-C martensitics may be used where extreme hardness is required but note differences in corrosion and toughness.

Hagyj egy megjegyzést

Az Ön e -mail címét nem teszik közzé. A szükséges mezőket meg vannak jelölve *

Görgessen a tetejére

Kérjen azonnali árajánlatot

Kérjük, töltse ki adatait, és mi azonnal felvesszük Önnel a kapcsolatot.