1. Pengenalan
Aluminum vs Steel Casting — choosing between these two foundational materials shapes component performance, cost and manufacturability across industries from automotive to energy.
This comparison is not merely about metal chemistry: it encompasses density and stiffness, tingkah laku terma, casting process compatibility, secondary processing (rawatan haba, kejuruteraan permukaan), lifecycle cost and application-specific reliability.
Engineers and purchasers must therefore evaluate the entire system—loading, suhu, environment, production volume and finish requirements—before specifying a metal and casting route.
2. Fundamental Material Differences Between Aluminum vs Steel
At the core of aluminum vs. steel casting lies a fundamental metallurgical and physical contrast that directly affects how each material behaves during casting, pemesinan, dan perkhidmatan.
Harta benda | Aluminium (Mis., Al-i allays) | Keluli (Mis., carbon or low-alloy steels) | Implikasi Kejuruteraan |
Ketumpatan (g/cm³) | 2.70 | 7.85 | Aluminum is ~65% lighter, offering major weight savings for transportation and aerospace. |
Titik lebur (° C.) | 615-660 | 1425–1540 | Aluminum’s low melting point enables easier casting and lower energy consumption; steel requires specialized furnaces. |
Kekonduksian terma (W/m · k) | 120-180 | 40-60 | Aluminum dissipates heat efficiently—ideal for engines, penukar haba, dan elektronik. |
Kekuatan khusus (MPa/ρ) | ~100–150 | ~70–90 | Despite lower absolute strength, aluminum’s strength-to-weight ratio surpasses that of steel. |
Modulus elastik (GPA) | 70 | 200 | Steel is stiffer, providing better rigidity under load and vibration. |
Rintangan kakisan |
Cemerlang (forms Al₂O₃ layer) | Pembolehubah; prone to rust without coatings | Aluminum resists oxidation naturally, while steel needs surface protection (lukisan, penyaduran, or alloying with Cr/Ni). |
Kebolehkerjaan | Cemerlang | Sederhana hingga sukar | Aluminum’s softness allows easy machining and shorter cycle times; steel requires tougher tooling. |
Recyclabality | >90% recoverable | >90% recoverable | Both materials are highly recyclable, though aluminum’s remelting requires less energy (5% of primary production). |
Casting Shrinkage (%) | 1.3-1.6 | 2.0–2.6 | Steel shrinks more during solidification, demanding larger allowances and more complex gating/feeding systems. |
Kos (lebih kurang., USD/kg) | 2.0-3.0 | 0.8-1.5 | Aluminum is more expensive per kilogram, but savings in weight and processing can offset total lifecycle costs. |
3. What Is Aluminum Casting?
Aluminium Casting is the process of shaping molten aluminum or aluminum alloys into complex, near-net-shape components using molds.
It is one of the most widely used metal casting processes globally—accounting for over 50% of all nonferrous castings—due to aluminum’s excellent castability, ketumpatan rendah, dan rintangan kakisan.
Gambaran Keseluruhan
In aluminum casting, Aluminium Molten (biasanya antara 680–750°C) is poured or injected into a mold cavity where it solidifies into the desired geometry.
Aluminum’s low melting point and high fluidity make it ideal for both mass-production methods (like die casting) dan Aplikasi ketepatan tinggi (like investment casting).
Key Features of Aluminum Casting
- Nisbah kekuatan-ke-berat yang ringan dan tinggi:
Aluminum castings offer excellent mechanical performance while being about satu pertiga berat keluli. - Rintangan kakisan yang baik:
Nipis, penyembuhan diri Lapisan aluminium oksida (Al₂o₃) protects against oxidation and most atmospheric or marine corrosion. - Kekonduksian terma dan elektrik yang sangat baik:
Suitable for applications like penukar haba, perumahan, and electric components. - Recyclabality:
Aluminum can be recycled indefinitely without degradation, reducing production energy by up to 95% compared to primary smelting.
Common Aluminum Casting Processes
Kaedah pemutus | Penerangan | Aplikasi biasa |
Mati Casting | High-pressure injection of molten aluminum into steel dies; yields precise, bahagian berdinding nipis. | Bahagian automotif (Perumahan gear, kurungan), Elektronik Pengguna. |
Pemutus pasir | Molten metal poured into sand molds; suitable for larger, lower-volume parts. | Blok enjin, manifolds, perumahan aeroangkasa. |
Pelaburan Pelaburan | Ceramic molds from wax patterns; ideal for fine details and tight tolerances. | Komponen turbin aeroangkasa, Peranti perubatan. |
Pemutus acuan kekal | Reusable metal molds; good surface finish and dimensional control. | Piston, Roda, dan komponen marin. |
Pemutus Centrifugal | Uses centrifugal force to distribute molten metal; padat, Struktur bebas kecacatan. | Tiub, lengan baju, and rings. |
Kelebihan Pemutus Aluminium
- Ringan: Reduces component weight by 30-50% vs. keluli, meningkatkan kecekapan bahan api (automotif) or payload capacity (Aeroangkasa).
- Kecekapan tenaga: Melting aluminum requires 60–70% less energy than steel (570° C vs.. 1420° C.), lowering processing costs by 20-30%.
- Rintangan kakisan: Eliminates the need for coatings (Mis., cat, galvanizing) dalam kebanyakan persekitaran, reducing maintenance costs by 40-50%.
- High-Volume Viability: Die casting enables production of 1000+ parts/day per machine, meeting consumer goods demand.
Disadvantages of Aluminum Casting
- Kekuatan yang lebih rendah: Kekuatan tegangan (150-400 MPa) is 50–70% lower than high-strength steel, limiting use in heavy-load applications.
- Poor High-Temperature Performance: Retains only 50% of room-temperature strength at 250°C, making it unsuitable for engine exhaust or power plant components.
- Risiko keliangan: Die-cast aluminum is prone to gas porosity (from high-pressure injection), restricting heat treatment options (Mis., T6 temper requires vacuum processing).
- Higher Raw Material Cost: Primary aluminum costs $2,500–$3,500/tonne, 2–3x more than carbon steel.
Industrial Applications of Aluminum Casting
Aluminum casting is widely used across multiple industries due to its combination of Reka bentuk ringan, kebolehkerjaan, dan rintangan kakisan:
- Automotif: Blok enjin, perumahan penghantaran, Roda, and suspension arms.
- Aeroangkasa: Kurungan, kelengkapan struktur, perumahan pemampat.
- Elektronik: Tenggelam haba, perumahan motor, kandang.
- Barang pengguna: Peralatan, alat kuasa, Perkakasan perabot.
- Marine and Renewable Energy: Kipas, perumahan, dan bilah turbin.
4. What Is Steel Casting?
Steel casting is the process of pouring molten steel into a mold to produce complex, high-strength components that cannot be easily fabricated or forged.
Unlike aluminum, steel has a titik lebur yang lebih tinggi (≈ 1450–1530°C) and greater tensile strength, menjadikannya sesuai untuk load-bearing and high-temperature applications such as machinery, infrastructure, dan penjanaan kuasa.
Gambaran Keseluruhan
In steel casting, carefully alloyed molten steel is poured into either expendable (pasir, pelaburan) or permanent molds, where it solidifies into a shape close to the final part.
Because steel shrinks significantly upon cooling, precise temperature control, Reka bentuk gating, and solidification modeling kritikal.
Steel castings are known for their Kekukuhan mekanikal, rintangan kesan, dan integriti struktur, particularly under harsh service conditions.
Key Features of Steel Casting
- Exceptional Strength and Toughness:
Yield strengths often exceed 350 MPA, with heat-treated alloys reaching over 1000 MPA. - High-Temperature Capability:
Retains strength and oxidation resistance up to 600–800°C, depending on composition. - Versatile Alloy Selection:
Includes Keluli karbon, Keluli rendah aloi, Keluli tahan karat, and high-manganese steels, each tailored for specific environments. - Kebolehkerjaan dan kebolehkerjaan:
Cast steels can be post-processed effectively—machined, dikimpal, and heat-treated to enhance performance.
Common Steel Casting Processes
Kaedah pemutus | Penerangan | Aplikasi biasa |
Pemutus pasir | Molten steel poured into bonded sand molds; Sesuai untuk besar, bahagian kompleks. | Badan injap, casing pam, machinery housings. |
Pelaburan Pelaburan | Ceramic molds formed from wax patterns; yields excellent accuracy and surface finish. | Bilah turbin, alat pembedahan, bahagian aeroangkasa. |
Pemutus Centrifugal | Rotational force distributes molten steel evenly; produces dense cylindrical components. | Paip, pelapik, Bearing Races. |
Casting acuan shell | Uses thin resin-coated sand molds; allows higher precision and smoother surfaces. | Bahagian enjin kecil, kurungan. |
Pemutus berterusan | For semi-finished steel products like slabs and billets. | Raw material for rolling and forging. |
Advantages of Steel Casting
- Superior Strength & Ketangguhan: Kekuatan tegangan (hingga 1500 MPA) and impact toughness (40-100 j) make it irreplaceable for structural safety (Mis., Komponen jambatan, casis automotif).
- Prestasi suhu tinggi: Operates reliably at 400-600 ° C. (vs. aluminum’s 250°C limit), suitable for jet engine casings and power plant boilers.
- Low Raw Material Cost: Carbon steel costs $800–$1200/tonne, 60–70% less than primary aluminum.
- Pakai rintangan: Heat-treated steel (Mis., 4140) has surface hardness up to 500 Hb, reducing replacement frequency in abrasive applications by 50-70%.
Disadvantages of Steel Casting
- High Weight: Density 2.7x that of aluminum increases fuel consumption (automotif) or structural load (bangunan).
- High Energy Use: Melting steel requires 25–30 MWh/tonne (vs. 5–7 MWh/tonne for aluminum), increasing processing costs by 40-50%.
- Kerentanan kakisan: Carbon steel rusts in moist environments (kadar kakisan: 0.5-1.0 mm/tahun in salt spray), requiring coatings (Mis., galvanizing) that add $1.5–$2.5/kg to costs.
- Poor Machinability: Hardness requires specialized tools, Meningkatkan masa pemesinan oleh 30-50% vs. aluminium.
Industrial Applications of Steel Casting
Steel castings dominate industries demanding kekuatan, ketahanan, dan rintangan haba:
- Pembinaan & Perlombongan: Excavator teeth, bahagian penghancur, track links.
- Tenaga & Penjanaan kuasa: Steam turbine casings, badan injap, Komponen nuklear.
- Minyak & Gas: Drill heads, pipeline valves, manifolds.
- Pengangkutan: Train couplers, Perumahan gear, heavy-duty engine blocks.
- Aeroangkasa & Pertahanan: Gear pendaratan, kelengkapan struktur, armor components.
5. Perbandingan komprehensif: Aluminium vs Casting Steel
Process fit and part geometry
- Berdinding nipis, kompleks, Bahagian tinggi: aluminum die casting is optimal (HPDC).
- Besar, berat, load-bearing parts: steel/spheroidal graphite (Dukes) iron and cast steels via sand casting are preferred.
- Medium volume with high integrity requirements: low-pressure aluminum or investment casting steels depending on strength needs.
Mechanical performance & pasca pemprosesan
- Rawatan haba: cast steel can be quenched & tempered to obtain high strength and toughness; aluminum alloys have age-hardening routes but reach lower maximum strengths.
- Surface engineering: aluminum readily anodizes; steel can be nitrided, carburized, induction hardened or coated with hard substances (Seramik, krom keras).
Pemandu kos (typical considerations)
- Material cost per kg: aluminum raw metal tends to be priced higher per kg than ferrous scrap/steel, but part mass reduces required amount.
- Perkakas: die casting dies are expensive (high initial amortization) but low per-part cost at volumes >10k–100k; sand tooling is cheap but per-part labor higher.
- Pemesinan: aluminum machines faster (higher removal rates), lower tool wear; steel requires harder tooling and more machining time—raises total cost especially for small batches.
Pengilang & defect modes
- Keliangan: HPDC aluminum can develop gas and shrinkage porosity; permanent-mold and low-pressure reduce porosity.
Steel castings can suffer inclusions and segregation; controlled melting and post-HT reduce defects. - Kawalan dimensi: die cast aluminum attains tight tolerances (± 0.1-0.3 mm); sand cast steel tolerances are looser (±0.5–2 mm) without post-machining.
Alam sekitar & life-cycle
- Kitar semula: both metals are highly recyclable. Recycled aluminum uses a small fraction (~5–10%) of the energy of primary smelting; recycled steel also has large energy savings compared to virgin iron.
- Use-phase: lightweight aluminum can reduce fuel consumption in vehicles — a system-level environmental benefit.
Jadual: Aluminum vs Steel Casting — Key Technical Comparison
Kategori | Pemutus aluminium | Pemutus keluli |
Ketumpatan (g/cm³) | ~2.70 | ~7.80 |
Titik lebur (° C. / ° f) | 660° C. / 1220° f | 1450-1530 ° C. / 2640–2790°F |
Kekuatan (Tegangan / Hasil, MPA) | 130-350 / 70-250 (as-cast); hingga 500 selepas rawatan haba | 400-1200 / 250-1000 (Bergantung pada rawatan gred dan haba) |
Kekerasan (Hb) | 30-120 | 120-400 |
Modulus elastik (GPA) | 70 | 200 |
Kekonduksian terma (W/m · k) | 150-230 | 25-60 |
Kekonduksian elektrik (% IACS) | 35-60 | 3-10 |
Rintangan kakisan | Cemerlang (Lapisan oksida semulajadi) | Variable — requires alloying (Cr, Dalam, Mo) atau salutan |
Rintangan pengoksidaan (High-Temp) | Terhad (<250° C.) | Baik untuk Cemerlang (up to 800°C for some alloys) |
Kebolehkerjaan | Cemerlang (lembut, easy to cut) | Sederhana hingga miskin (lebih sukar, kasar) |
Kebolehan (Ketidakstabilan & Pengecutan) | Ketidakstabilan yang tinggi, pengecutan rendah | Lower fluidity, higher shrinkage — needs precise gating |
Kelebihan berat badan | ~65% lighter than steel | Heavy — suitable for structural loads |
Kemasan Permukaan |
Licin, good detail reproduction | Rougher surfaces; may need machining or shot blasting |
Heat Treatment Flexibility | Cemerlang (T6, T7 tempers) | Luas (penyepuhlindapan, pelindapkejutan, pembiakan, menormalkan) |
Recyclabality | >90% recycled efficiently | >90% recyclable but requires higher remelting energy |
Production Cost | Lower energy, Masa kitaran yang lebih cepat | Higher melting cost and tool wear |
Toleransi tipikal (mm) | ±0.25 to ±0.5 (die casting); ±1.0 (Pemutus pasir) | ±0.5–1.5 depending on process |
Environmental Footprint | Rendah (especially recycled aluminum) | Higher CO₂ and energy footprint due to high melting point |
Aplikasi biasa | Roda automotif, perumahan, bahagian aeroangkasa, barang pengguna | Injap, turbin, jentera berat, komponen struktur |
6. Kesimpulan
Aluminum and steel castings solve different engineering problems.
Aluminum excels where Berat ringan, kekonduksian terma, surface quality and high production rates matter.
Keluli (and cast irons) dominate where kekuatan tinggi, kekakuan, Pakai rintangan, toughness and elevated temperature performance diperlukan.
Good material selection balances functional requirements, kos (total life cycle), producibility and finishing.
In many modern designs hybrid solutions appear (steel inserts in aluminum castings, clad or bimetallic components) to exploit the strengths of both metals.
Soalan Lazim
Yang lebih kuat: cast aluminum or cast steel?
Cast steel is significantly stronger—A216 WCB steel has a tensile strength of 485 MPA, 67% higher than A356-T6 aluminum (290 MPA).
Steel also has far greater toughness and wear resistance.
Can cast aluminum replace cast steel?
Only in applications where weight reduction is prioritized over strength (Mis., automotive non-structural parts).
Steel is irreplaceable for high-load, high-temperature components (Mis., casing turbin).
Which is more corrosion-resistant: cast aluminum or cast steel?
Cast aluminum is more corrosion-resistant in most environments (kadar kakisan <0.1 mm/tahun) vs. keluli karbon (0.5-1.0 mm/tahun).
Stainless steel castings match aluminum’s corrosion resistance but cost 2–3x more.
Which casting process is best for aluminum vs. keluli?
Aluminum is ideal for die casting (volum tinggi) and sand casting (kos rendah).
Steel is best for sand casting (bahagian besar) dan pemutus pelaburan (kompleks, high-tolerance components). Die casting is rarely used for steel.