翻訳を編集します
による Transposh - translation plugin for wordpress
6061 vs 7075 アルミニウム

6061 アルミニウム対. 7075 アルミニウム

コンテンツの表 見せる

1. 導入

Two of the most widely used structural alloys are 6061 vs. 7075 アルミニウム.

どちらも6xxxおよび7xxxシリーズに属しますが, それぞれ, their chemistries and performance characteristics diverge significantly.

その結果, designers in the aerospace, 自動車, 海兵隊, and sports equipment industries must select the alloy that aligns with their specific requirements.

This article presents an in-depth, multi-perspective analysis of 6061 対 7075 アルミニウム.

We will explore their alloy compositions, compare mechanical and physical properties, examine corrosion resistance and fabrication considerations, evaluate cost and availability, and offer practical guidelines for alloy selection.

2. Chemical Elements of 6061 vs. 7075 アルミニウム

要素 6061 構成 (wt %) Role in 6061 7075 構成 (wt %) Role in 7075
アルミニウム バランス (~97.9–98.5 %) プライマリマトリックス; 公爵, lightweight structure バランス (~90.7–91.9 %) プライマリマトリックス; 公爵, lightweight structure
マグネシウム 0.8–1.2 % Forms Mg₂Si precipitates for age-hardening; improves strength and corrosion resistance 2.1–2.9 % Combines with Zn to form MgZn₂ (η phase) for high strength
シリコン 0.4–0.8 % Combines with Mg to form Mg₂Si; enhances castability and weldability ≤ 0.4 % Controlled low level to minimize brittleness; slight strengthening
クロム 0.04–0.35 % 穀物構造を改良します; inhibits grain growth during heat treatment 0.18–0.28 % Suppresses grain-boundary precipitation; タフネスを改善します
0.15–0.40 % Contributes to age-hardening (Al₂CuMg) but kept low to preserve corrosion resistance 1.2–2.0 % Combines with Mg to form S phase (Al₂CuMg), 強度を高める
亜鉛 ≤ 0.25 % 最小限; primarily impurity control 5.1–6.1 % Major age-hardening element forming η (MgZn₂) 沈殿します
≤ 0.7 % 不純物; kept low to prevent brittle Fe-Si intermetallics ≤ 0.5 % 不純物; low to avoid formation of detrimental intermetallics
マンガン ≤ 0.15 % Scavenges Fe to form dispersoids, reducing harmful intermetallics ≤ 0.3 % Combines with Fe to form fine dispersoids, improving grain refinement
チタン
≤ 0.15 % Grain refiner when added as Ti-B master alloy; タフネスを改善します ≤ 0.2 % 穀物精製所; 均一な微細構造を促進します
その他 (例えば。, Zn in 6061, Si in 7075) Minor/trace Controlled impurities; maintain balance of properties Minor/trace Controlled impurities; maintain balance of properties

3. 機械的特性の比較

To understand how 6061 vs. 7075 aluminum alloys perform in service, engineers must compare their tensile strength, 降伏強度, 延性, 硬度, and fatigue resistance across common tempers.

財産 6061-T6 6061-T4 7075-T6 7075-T73 ユニット
究極の引張強度 310 240 570 480 MPA (KSI)
降伏強度 (0.2% オフセット) 275 145 505 435 MPA (KSI)
休憩時の伸び 12–17 18–22 5–11 11–15 %
ブリネルの硬度 (HBW) 95 60–70 150 135 HB
持久力制限 (r = −1) 145 90 250 200 MPA

4. 物理的な & の熱特性 6061 vs. 7075 アルミニウム

財産 6061 アルミニウム 7075 アルミニウム ユニット メモ
密度 2.70 2.81 g/cm³ 7075 is slightly denser due to higher alloying elements
熱伝導率 167 130 w/m・k 6061’s higher conductivity makes it better for heat‐sink applications
熱膨張係数 23.6 23.4 µm/m・°C ほぼ同一, simplifying joint design over temperature changes
電気伝導率 43 33 % IACS 6061 is more conductive, useful in electrical/EMI applications
比熱容量 0.90 0.96 j/g・°C Both require moderate energy for temperature changes
融解範囲 (固体) 582 - 652 477 - 635 °C 6061 has a narrower interval; 7075’s lower solidus reflects Zn content
凝固収縮 1.2 - 1.4 1.2 - 1.6 % Minor differences; both require similar die‐casting allowances

5. 耐食性 & 表面の動作

Native Oxide & 危険性

Both alloys develop a thin, adherent Al₂O₃ layer (2–5 nm厚) almost instantaneously upon exposure to air. This passive film confers general corrosion resistance in neutral environments.

6061 vs 7075 アルミニウム
6061 vs 7075 アルミニウム

ピッティング & 顆粒間腐食

  • 6061: Its moderate copper (≤0.40 %) とシリコン (≤0.80 %) maintain good pitting resistance—even in mildly acidic or chloride-laden environments.
    ASTM B117 SALT-SPRAYテストで, 6061 typically resists pitting for 以上 200 時間 without protective coatings.
  • 7075: High zinc (5.1–6.1 %) と銅 (1.2–2.0 %) levels heighten susceptibility to pitting, especially in chloride ions.
    さらに, the T6 temper can foster susceptible grain boundaries, につながる 顆粒間腐食 if not overaged (T73).
    In salt-spray trials, 7075-T6 may show pitting within 50–100 hours unless anodized and properly sealed.

表面処理

    • 6061: Typically performs well under Type II (硫黄) 陽極酸化します, producing 5–15 µm oxide that resists fatigue and corrosion.
      Hard-coat Type III can reach 15–25 µm for wear resistance.
    • 7075: Responds poorly to sulfuric anodize due to high alloy content; brightening or chromic acid anodize is often used to maintain surface integrity.
      Hard-coat must be done carefully to prevent sealing issues; post-anodizing sealing is essential for prolonged chloride exposure.
  • 変換コーティング: クロム酸塩変換 (iridite) on 6061 降伏します 1000 h+ salt-spray life,
    一方 7075 often requires trivalent zinc phosphate or hex-chromate treatments plus organic topcoats to approach similar performance.

ストレス腐食亀裂 (SCC) Susceptibility

  • 6061: Exhibits minimal SCC risk in ambient and mildly corrosive settings when properly heat-treated (T6 or T651).
  • 7075: In T6, 7075 is notoriously prone to SCC under tensile stress and humid conditions.
    Overaging to T73 または T76 can mitigate SCC by coarsening η-precipitates, at the expense of ~10–15 % 強さ.
    Designers should consider protective coatings or alternate tempers for critical, wet environments.

6. 溶接性 & Fabrication of 6061 vs. 7075 アルミニウム

6061 アルミニウム

溶接性: 素晴らしい. Most common processes (Gmaw/Mig, gtaw /ターン, resistance welding, 摩擦攪拌溶接) succeed with minimal cracking.
Typical filler alloys include 4043 (Al-5Si) そして 4047 (AL-12SI).

  • Post-Weld Strength: 溶接後, a T6-like state is compromised; weld zones often require T4 + T6 re-aging to regain ~ 90 % ベースメタル強度の.
  • ホットクラッキング: Rare in 6061 if preheat (80–120 °C) and modest travel speeds are used.

加工性 & 形にする: 優れた機械性 (~ 60–70 % の 2011 評価), with moderate speeds (200–300 m/i) and carbide tooling.

7075 アルミニウム

溶接性: 挑戦的. The high Zn and Cu contents induce hot-cracking and loss of temper.

  • Common Welding Method:摩擦攪拌溶接 (FSW)—preferred because it avoids melting and preserves much of the base temper.
  • 融合溶接: 必要に応じて, GTAW with 5356 filler 使用できます, but the heat-affected zone (ハズ) suffers significant strength loss.
    Post-weld, a T73 or T76 re-aging is essential to restore some strength and reduce SCC risk.

加工性 & 形にする:

  • 加工性: 中程度から貧しい (40–50 % の 2011 評価), requiring slower feeds (100–200 m/i) and robust coolant.
  • 形にする: Limited cold formability; parts are often solutionized (410 °C), rapidly quenched, then warm-worked to reduce cracking.
7075 Aluminum Forgings
7075 Aluminum Forgings

7. 料金, 可用性 & Supply Chain

Relative Material Costs

  • 6061: Typically priced around $2.50–$3.00/kg (depending on sheet, 皿, または押し出し).
  • 7075: Commands a premium of approximately $3.00–$3.80/kg, または 20–30 % より多い 6061, reflecting its higher alloying content and specialized processing.

Form Factors & Stock Forms

  • 6061: Extremely versatile and widely stocked in シート (0.5–300 mm), , バー, チューブ, そして 押出. Lead times are typically 2–4週 for custom sizes or shapes.
  • 7075: More limited—commonly available as (まで 200 厚さmm), 偽造, そして specialty plates.
    Extrusion availability is scarce, and lead times can stretch to 6–8週 for large cross-sections.
6061 アルミニウムプロファイル
6061 アルミニウムプロファイル

Lead Times & 市場動向

  • 6061: Global surplus capacity and abundant recyclability ensure stable supply, even when demand spikes in automotive or construction sectors.
  • 7075: Fluctuations in aerospace demand can cause intermittent shortages—particularly for large plates (> 100 mm) or high-spec tempers (T6/T73).
    Planning orders well in advance is advisable.

8. のアプリケーション 6061 アルミニウム対. 7075 アルミニウム

When specifying aluminum for a particular application, engineers must balance strength, 重さ, 耐食性, 製造可能性.

6061 アルミニウム (UNS A96061)

Marine and Boating

  • Boat Rails and Stanchions: Welded 6061-T6 tubing resists saltwater corrosion under Type II anodize, 多くの場合 1 ½–2 in. OD.
  • Bilge Pump Housings: Die‐cast or machined 6061-T651 bodies withstand continuous immersion and deliver leak‐free performance.
  • Deck Hardware (Cleats, Pad Eyes): Extruded or cast fittings use 6061-T6 for long‐term durability; salt‐spray testing shows > 1 000 h to first pitting.

Architectural and Structural

  • Window and Door Frames: 6061-T6 extruded profiles (例えば。, 2 で. × 3 で. sections) on high‐rise facades remain corrosion‐free for 20+ years in coastal climates.
  • Guardrails and Balustrades: Welded 6061-T6 assemblies with 1 で. vertical pickets and 1 で. handrails provide both strength (yield ≈ 275 MPA) そして天候の抵抗.
  • Sign Posts and Supports: Formed sheet‐metal panels and welded brackets fabricated from 6061-T4/T6 maintain dimensional stability in temperature swings from −20 °C to 50 °C.

自動車と輸送

  • Lightweight Frame Members: 6061-T6 extruded cross‐members and seat‐rail brackets (yield ≈ 275 MPA) reduce vehicle weight by up to 15% versus mild steel without sacrificing crashworthiness.
  • Trailer Tongues and Chassis Components: Welded 6061-T651 tubing (例えば。, 2 で. × 2 で. box sections) supports payloads while resisting road‐salt corrosion.
  • 熱交換器のエンドキャップ: CNC‐machined 6061-T6 caps endure cyclic temperatures up to 120 °C and deliver tight sealing against O-rings in radiators and condensers.

家電とヒートシンク

  • Laptop and Desktop Heat Sinks: 押し出し 6061 fin arrays (300 mm × 100 mm × 10 mm fins) leverage 6061’s thermal conductivity (〜167 w/m・k) to dissipate 50–100 W from CPUs.
  • Enclosure Frames and Chassis: Sheet‐metal 6061-T4/T6 panels (1–3 mm thick) shield electronics from EMI while maintaining a sleek anodized finish.
6061 T6 Aluminum Parts
6061 T6 Aluminum Parts

HVAC and Industrial Equipment

  • コンプレッサーハウジング: Die‐cast or sand‐cast 6061-T6 bodies handle compressed refrigerant at 100 °C, with creep strain < 0.5% 以上 10 000 h at 50 MPA.
  • Pump Impeller Blades: Machined or cast 6061-T6 vanes withstand continuous water flow, demonstrating excellent wear and erosion resistance.

7075 アルミニウム (UNS A97075)

航空宇宙と防御

  • Wing Spar Caps and Fuselage Frames: Rolled or forged 7075-T6 sections (例えば。, 50 mm × 150 mm cross‐sections) withstand cyclic bending loads of 350 MPa for > 10⁶サイクル.
  • Landing Gear Fittings: 7075-T651 forgings (plate thicknesses 20–50 mm) deliver localized strength > 500 MPa at −40 °C, critical for high‐impact touchdown loads.
  • Missile and Rocket Structural Components: Machined 7075-T73 (過剰になった) parts resist stress‐corrosion cracking in humid launch‐pad environments.

High‐Performance Automotive & モータースポーツ

  • Suspension Arms and Roll Cage Tubing: CNC‐machined or seamless 7075-T6 tubing (例えば。, 40 mm OD, 3 mm wall) endures torsional stresses > 1 500 Nm while reducing unsprung mass by ~ 30%.
  • Turbocharger Compressor Wheels: 7075-T6 impellers (20–40 mm diameter) sustain blade tip speeds > 100 m/s and resist creep at 200 °C for > 1 000 h.
7075 アルミニウム部品
7075 アルミニウム部品

スポーツ用品

  • Bicycle Frames and Forks: 7075-T6 TIG‐welded tube assemblies (例えば。, 28 mm OD × 1 mm wall) weigh ~ 1.2 kg for a full frame and tolerate fatigue loads of 250 MPa over ~ 10⁶ km of road cycling.
  • Snowboard Binding Plates: Machined 7075-T6 plates (150 mm × 100 mm × 5 mm) resist impact loads > 3 kN at −20 °C with minimal deformation (< 0.5 mm).

Precision Machined Components

  • Optical Mounting Fixtures: 7075-T73 machined plates (300 mm × 200 mm × 10 mm) hold alignment to ± 0.05 mm at operating temperatures of 20–40 °C without creep.

High‐Torque Machinery Parts

  • Gearbox Housings and Shafts: CNC‐machined 7075-T6 housings (thicknesses 15–30 mm) resist localized stresses > 600 MPA, enabling more compact designs for high‐performance transmissions.
  • Clutch Forks and Cam Followers: 硬化, T6 7075 steel‐backed inserts in 7075-T651 bodies deliver wear resistance under 500 °C and cyclic contact pressures > 800 MPA.

9. 設計上の考慮事項 & 合金選択ガイドライン

Strength-to-Weight Trade-Off

  • 選ぶ 7075 if your design demands the highest static or fatigue strength per unit mass—for example,
    aerospace wing components or competitive bicycle frames where weight savings of 15–25 % matter more than weldability.
  • 選ぶ 6061 when moderate strength (310 MPA引張) suffices and when durability and fabrication ease are priorities—such as structural components in marine or automotive applications.

環境 & Corrosion Factors

  • 6061 thrives in humid, 沿岸, or mildly acidic settings—e.g., 建築トリム, boat hardware, solar panel frames—because its lower copper content (< 0.40 %) reduces pitting risk.
  • 7075 should be restricted to controlled or coated environments. If used outdoors, 適用する hard anodize (タイプIII) and seal with nickel acetate.
    または、または, consider T73 temper to improve SCC resistance but accept ~ 10 % 強度が低い.

Welded vs. Machined vs. Cast Components

  • 6061 is ideal for welded assemblies: minimal hot cracking, predictable post-weld strength (~ 80–90 % of base), and compatibility with common filler wires.
  • 7075 is best reserved for 機械加工 または 偽造 parts where welding is minimal or replaced by 摩擦攪拌溶接. Avoid large weld seams, unless a full re-age (T73 or T76) is feasible.

費用便益分析

  • もし raw material cost is a driving factor, 6061 (≈ $2.50/kg) is generally 20–30 % より安い 7075 (≈ $3.00/kg). For large structures, this margin compounds.
  • もし performance per mass is critical—e.g., 節約 2 kg on a 50 kg assembly—7075 can justify its premium.
    しかし, one must factor in potential rework costs: 7075 often incurs extra machining time (20 % slower feed rates) and more complex heat-treat cycles if welding is needed.

10. 新たな傾向 & 将来の方向

Heat Treatment Innovations

  • 6061: Researchers are experimenting with RRA (Retrogression and Re-Aging) to push T6 strengths above 350 MPA while retaining ductility.
    Early results indicate a 5–10 % strength gain with negligible elongation loss.
  • 7075: Novel overaging sequences-のような T76 (120 °C× 24 h followed by 160 °C× 8 h)—can suppress SCC sensitivity while preserving ≈ 90 % of T6’s 570 MPA.
    These processes are emerging in aerospace platforms where safety margins outweigh raw strength.
7075 Aluminum Steering Knuckle
7075 Aluminum Steering Knuckle

Hybrid and Composite Solutions

  • Clad Sheets: By laminating 6061 以上 7075 コア, manufacturers produce panels combining 7075’s core strength with 6061’s weldable, 耐腐食性表面.
    Trials show such cores can support 30 % higher loads in sandwich panels while maintaining exterior integrity in corrosive atmospheres.
  • Metal-Matrix Composites (MMC): Embedding SiC nanoparticles into a 6061 または 7075 matrix is under investigation for next-generation aerospace alloys.
    Early prototypes exhibit 20 % increased stiffness with minimal density penalty, but the technology remains in development due to processing complexity.

Additive Manufacturing Prospects

  • パウダーベッドフュージョン: Printing of 6061 powder is advancing, achieving near-100 % density and tensile strengths of 280 MPA in as-built parts.
    しかし, 7075 PBF faces challenges: hot cracking due to rapid solidification.
    In-situ heat treatment within the build chamber shows promise—one study reported 200 MPA tensile in as-built 7075, rising to 450 MPA after post-build aging.
  • 指示されたエネルギー堆積 (ded): Used chiefly for repair, DED of 7075 overlays on worn 7075 forgings can restore up to 90 % 元の強さの.
    まだ, controlling dilution and microstructure remains a technical hurdle.

11. の違いは何ですか 6061 そして 7075 アルミニウム合金?

Here’s a concise comparison table summarizing the key differences between 6061 vs. 7075 アルミニウム合金:

財産 6061 アルミニウム合金 7075 アルミニウム合金
主な合金要素 マグネシウム, シリコン 亜鉛, マグネシウム, 銅
抗張力 (T6) 〜310 MPa (45 KSI) 〜570 MPa (83 KSI)
降伏強度 (T6) 〜276 MPa (40 KSI) ~505 MPa (73 KSI)
伸長 (%) ~12% ~11%
硬度 (ブリネル) 〜95 〜150
耐食性 素晴らしい 適度 (requires protective coatings)
溶接性 素晴らしい 貧しい (ひびが入りやすい)
加工性 良い 公正から良い
疲労抵抗 適度 素晴らしい
料金 より低い より高い
典型的なアプリケーション 構造, 海兵隊, 自動車, 自転車フレーム 航空宇宙, 軍隊, 高性能機器

12. 結論

最終的に, the choice between these two アルミニウム合金 hinges on application priorities:

  • Select 6061 for welded structures, 海洋継手, 建築の押し出し, and general‐purpose components where moderate strength, 製造の容易さ, and long‐term corrosion resistance are paramount.
  • Select 7075 for high‐performance structural parts in aerospace, モータースポーツ, and defense where every kilogram saved translates to tangible performance gains—provided that designers mitigate SCC and accept tighter welding or machining constraints.

先を見ています, ongoing advancements in heat‐treatment techniques (例えば。, retrogression and re‐aging for 6061,

novel overaging protocols for 7075) and hybrid material solutions (such as clad or composite laminates) promise to further blur the lines between these alloys.
しかし, by grounding material selection in a clear understanding of each alloy’s 強さ, 延性, 腐食挙動, 製造可能性,

engineers can continue to deliver safe, cost‐effective, and high‐performance designs across the spectrum of modern aluminum applications.

 

ランゲ 信頼できるものを提供します, high-quality fabricated components that meet stringent international standards.

Whether your project requires precision machining, corrosion-resistant castings, or engineered alloy treatments, ランゲ is your trusted manufacturing partner.

お問い合わせ 今日はあなたの次のプロジェクトについて話し合います.

コメントを残してください

メールアドレスは公開されません. 必要なフィールドにマークが付けられています *

一番上までスクロール

すぐに見積もりを取得

あなたの情報を入力してください。すぐにご連絡させていただきます.