Edit terjemahan
oleh Transposh - translation plugin for wordpress
Aluminum vs Stainless Steel

Aluminium vs.. Baja Tahan Karat: Perbandingan mendalam

Tabel konten Menunjukkan

1. Perkenalan

Aluminium vs.. stainless steel ranks among the world’s most widely used engineering metals.

Each material brings a distinct set of advantages—aluminum for its light weight and high conductivity, stainless steel for its strength and corrosion resistance.

Artikel ini memeriksa Aluminum vs Stainless Steel from multiple perspectives: fundamental properties, perilaku korosi, pembuatan, kinerja termal, structural metrics, biaya, aplikasi, dan dampak lingkungan.

2. Fundamental Material Properties

Komposisi Kimia

Aluminium (Al)

Aluminium ringan, silvery-white metal known for its corrosion resistance and versatility.

Commercial aluminum is rarely used in its pure form; alih-alih,

it is commonly alloyed with elements such as magnesium (Mg), silikon (Dan), tembaga (Cu), dan seng (Zn) to enhance its mechanical and chemical properties.

6061 Aluminum Alloy Coil
6061 Aluminum Alloy Coil

Examples of aluminum alloy compositions:

  • 6061 Aluminium Paduan: ~97.9% Al, 1.0% Mg, 0.6% Dan, 0.3% Cu, 0.2% Cr
  • 7075 Paduan Aluminium: ~87.1% Al, 5.6% Zn, 2.5% Mg, 1.6% Cu, 0.23% Cr

Baja Tahan Karat

Baja tahan karat is an iron-based alloy that contains setidaknya 10.5% kromium (Cr), which forms a passive oxide layer for corrosion protection.

It may also include nikel (Di dalam), Molybdenum (Mo), Mangan (M N), and others, Tergantung pada nilai.

304 Pipa Stainless Steel
304 Pipa Stainless Steel

Examples of stainless steel compositions:

  • 304 Baja Tahan Karat: ~70% Fe, 18–20% cr, 8–10.5% Ni, ~2% Mn, ~1% Si
  • 316 Baja Tahan Karat: ~65% Fe, 16–18% cr, 10-14% memiliki, 2–3% mo, ~2% Mn

Comparison Summary:

Milik Aluminium Baja Tahan Karat
Base Element Aluminium (Al) Besi (Fe)
Elemen paduan utama Mg, Dan, Zn, Cu Cr, Di dalam, Mo, M N
Magnet? Non-magnetik Some types are magnetic
Resistensi oksidasi Sedang, forms oxide layer Tinggi, due to chromium oxide film

Sifat fisik

Kepadatan

  • Aluminium: ~2.70 g/cm³
  • Baja Tahan Karat: ~7.75–8.05 g/cm³

Titik lebur

  • Aluminium: ~660° C. (1220° f)
  • Baja Tahan Karat: ~1370–1530°C (2500–2786°F)

3. Kinerja mekanis aluminium VS. Baja Tahan Karat

Mechanical performance encompasses how materials respond under different loading conditions—tension, compression, kelelahan, dampak, and high-temperature service.

Aluminium vs.. stainless steel exhibit distinct mechanical behaviors due to their crystal structures, alloy chemistries, and work-hardening tendencies.

316 Stainless Steel Round Rod
316 Stainless Steel Round Rod

Kekuatan tarik dan kekuatan luluh

Milik 6061-T6 Aluminum 7075-T6 Aluminum 304 Baja Tahan Karat (Dianil) 17-4 PH stainless steel (H900)
Kekuatan tarik, Uts (MPa) 290-310 570-630 505-700 930-1 100
Kekuatan luluh, 0.2 % Offset (MPa) 245-265 500-540 215-275 750-900
Perpanjangan saat istirahat (%) 12-17 % 11-13 % 40-60 % 8-12 %
Modulus Young, E (IPK) ~ 69 ~ 71 ~ 193 ~ 200

Kekerasan dan ketahanan aus

Bahan Kekerasan Brinell (HB) Kekerasan Rockwell (Jam) Relative Wear Resistance
6061-T6 Aluminum 95 HB ~ B82 Sedang; improves with anodizing
7075-T6 Aluminum 150 HB ~ B100 Bagus; prone to galling if uncoated
304 Baja Tahan Karat (Dianil) 143–217 HB ~ B70–B85 Bagus; work-hardens under load
17-4 PH stainless steel (H900) 300–350 HB ~ C35–C45 Bagus sekali; high surface hardness

Fatigue Strength and Endurance

Bahan Batas kelelahan (R = –1) Komentar
6061-T6 Aluminum ~ 95–105 MPa Surface finish and stress concentrators heavily influence fatigue.
7075-T6 Aluminum ~ 140–160 MPa Sensitive to corrosion fatigue; requires coatings in humid/sea air.
304 Baja Tahan Karat (Polished) ~ 205 MPa Excellent endurance; surface treatments further improve life.
17-4 PH stainless steel (H900) ~ 240–260 MPa Superior fatigue due to high strength and precipitation-hardened microstructure.

Dampak ketangguhan

Bahan Charpy V-Notch (20 ° C.) Komentar
6061-T6 Aluminum 20–25 j Good toughness for aluminum; reduces sharply at sub-zero temps.
7075-T6 Aluminum 10–15 j Ketangguhan yang lebih rendah; sensitive to stress concentrations.
304 Baja Tahan Karat 75–100 J Excellent toughness; retains ductility and toughness at low temps.
17-4 PH stainless steel 30–50 J Moderate toughness; lebih baik dari 7075 but lower than 304.

Creep and High-Temperature Performance

Bahan Service Temperature Range Resistensi Creep
6061-T6 Aluminum - - 200 ° C ke + 150 ° C. Creep begins above ~ 150 ° C.; not recommended above 200 ° C..
7075-T6 Aluminum - - 200 ° C ke + 120 ° C. Mirip dengan 6061; susceptible to rapid loss of strength above 120 ° C..
304 Baja Tahan Karat - - 196 ° C ke + 800 ° C. Retains strength to ~ 500 ° C.; di atas 600 ° C., creep rates increase.
17-4 PH stainless steel - - 100 ° C ke + 550 ° C. Excellent up to 450 ° C.; precipitation hardening begins to degrade beyond 550 ° C..

Hardness Variation with Heat Treatment

While aluminum alloys rely heavily on Pengerasan presipitasi, stainless steels employ various heat-treatment routes—anil, pendinginan, and aging—to adjust hardness and toughness.

  • 6061-T6: Solution heat-treated at ~ 530 ° C., water quenched, then artificially aged at ~ 160 °C to achieve ~ 95 HB.
  • 7075-T6: Solution treat ~ 480 ° C., memuaskan, age at ~ 120 ° C.; hardness reaches ~ 150 HB.
  • 304: Annealed at ~ 1 050 ° C., slow-cooled; hardness ~ B70–B85 (220–240 HV).
  • 17-4 Ph: Solution treat at ~ 1 030 ° C., air quench, age at ~ 480 ° C. (H900) to reach ~ C35–C45 (~ 300–350 HV).

4. Corrosion Resistance of Aluminum vs. Baja Tahan Karat

Native Oxide Layer Characteristics

Aluminium oksida (Al₂o₃)

  • Immediately upon exposure to air, Aluminium membentuk tipis (~ 2–5 nm) adherent oxide film.
    This passive film protects the underlying metal from further oxidation in most environments.
    Namun, in strongly alkaline solutions (ph > 9) or halide‐rich acid, the film dissolves, exposing fresh metal.
    Anodizing artificially thickens the Al₂O₃ layer (5–25 μm), greatly enhancing wear and corrosion resistance.

Chromium Oxide (Cr₂o₃)

  • Stainless steels rely on a protective Cr₂O₃ layer. Even with minimal chromium content (10.5 %), this passive film impedes further oxidation and corrosion.
    In chloride‐rich environments (MISALNYA., air laut, salt spray), localized breakdown (pitting) can occur;
    molybdenum additions (MISALNYA., 316 nilai, 2–3 % Mo) improve resistance to pitting and crevice corrosion.
7075 Aluminum Plate
7075 Aluminum Plate

Kinerja di berbagai lingkungan

Atmospheric and Marine Environments

  • Aluminium (MISALNYA., 6061, 5083, 5Seri XXX) performs well in marine settings when properly anodized or with protective coatings;
    Namun, crevice corrosion can initiate under deposits of salt and moisture.
  • Baja Tahan Karat (MISALNYA., 304, 316, rangkap) excels in marine atmospheres. 316 (Mo‐alloyed) and super‐duplex are particularly resistant to pitting in seawater.
    Nilai feritik (MISALNYA., 430) have moderate resistance but can suffer rapid corrosion in salt spray.

Chemical and Industrial Exposures

  • Aluminium menahan asam organik (asetat, formic) but is attacked by strong alkalis (Naoh) and halide acids (Hcl, HBr).
    In sulfuric and phosphoric acids, certain aluminum alloys (MISALNYA., 3003, 6061) can be susceptible unless concentration and temperature are tightly controlled.
  • Baja Tahan Karat exhibits broad chemical resistance. 304 resists nitric acid, organic acids, and mild alkalis; 316 endures chlorides and brines.
    Duplex stainless steels withstand acids (belerang, fosfat) better than austenitic alloys.
    Nilai martensit (MISALNYA., 410, 420) are prone to corrosion in acid environments unless heavily alloyed.

Oksidasi suhu tinggi

  • Aluminium: At temperatures above 300 °C in oxygen‐rich environments, the native oxide thickens but remains protective.
    Di luar ~ 600 ° C., rapid growth of oxide scales and potential intergranular oxidation occurs.
  • Baja Tahan Karat: Austenitic grades maintain oxidation resistance up to 900 ° C..
    For cyclic oxidation, specialized alloys (MISALNYA., 310, 316H, 347) with higher Cr and Ni resist scale spallation.
    Ferritic grades form a continuous scale up to ~ 800 °C but suffer embrittlement above 500 °C unless stabilized.

Surface Treatments and Coatings

Aluminium

  • Anodisasi (Type I/II sulfuric, Tipe III Anodize Keras, Type II/M phosphoric) creates a durable, corrosion‐resistant oxide layer. Natural color, dyes, and sealing can be applied.
  • Electroless Nickel‐Phosphorus deposito (10–15 µm) significantly enhance wear and corrosion resistance.
  • Lapisan Serbuk: Poliester, epoksi, or fluoropolymer powders produce a weather‐resistant, decorative finish.
  • Alclad: Cladding pure aluminum onto high‐strength alloys (MISALNYA., 7075, 2024) increases corrosion resistance at the expense of a thin softer layer.

Baja Tahan Karat

  • Pasifan: Acidic treatment (nitric or citric) removes free iron and stabilizes the Cr₂O₃ film.
  • Electropolishing: Mengurangi kekasaran permukaan, removing inclusions and enhancing corrosion resistance.
  • PVD/CVD Coatings: Titanium nitride (Timah) or diamond‐like carbon (DLC) coatings improve wear resistance and reduce friction.
  • Semprotan termal: Chromium carbide or nickel‐based overlays for severe abrasion or corrosion applications.

5. Thermal and Electrical Properties of Aluminum vs. Baja Tahan Karat

Electrical and thermal properties play a crucial role in determining the suitability of aluminum or stainless steel for applications such as heat exchangers, electrical conductors, and high‐temperature components.

Sifat termal

Bahan Konduktivitas termal (W/m · k) Koefisien ekspansi termal (× 10⁻⁶/° C.) Panas spesifik (J/kg · k)
6061-T6 Aluminum 167 23.6 896
7075-T6 Aluminum 130 23.0 840
304 Baja Tahan Karat 16 17.3 500
316 Baja Tahan Karat 14 16.0 500

Sifat listrik

Bahan Konduktivitas Listrik (IACS %) Resistivity (Oh; M)
6061-T6 Aluminum ~ 46 % 2.65 × 10⁻⁸
7075-T6 Aluminum ~ 34 % 3.6 × 10⁻⁸
304 Baja Tahan Karat ~ 2.5 % 6.9 × 10⁻⁷
316 Baja Tahan Karat ~ 2.2 % 7.1 × 10⁻⁷

6. Fabrication and Forming of Aluminum vs. Baja Tahan Karat

Fabrication and forming processes significantly influence part cost, kualitas, dan kinerja.

Aluminium vs.. stainless steel each present unique challenges and advantages in machining, joining, pembentukan, dan finishing.

Machinability and Cutting Characteristics

Aluminium (MISALNYA., 6061-T6, 7075-T6)

  • Chip Formation and Tooling: Aluminum produces short, curled chips that dissipate heat efficiently.
    Its relatively low hardness and high thermal conductivity draw cutting heat into the chips rather than the tool, Mengurangi keausan pahat.
    Carbide tools with TiN, Emas, or TiCN coatings at cutting speeds of 250–450 m/min and feeds of 0.1–0.3 mm/rev yield excellent surface finishes (Ra 0.2–0.4 µm).
  • Tepi built-up (BUSUR): Because aluminum tends to adhere to tool surfaces, controlling BUE requires sharp tool edges, moderately high feed rates, and flood coolant to wash away chips.
  • Tolerance and Surface Finish: Toleransi yang ketat (± 0.01 mm on critical features) are achievable with standard CNC setups.
    Surface finishes down to Ra 0.1 µm are possible when using high-precision fixtures and carbide or diamond-coated tooling.
  • Kerajaan kerja: Minimal; downstream passes can maintain consistent material properties without intermediate annealing.

Baja Tahan Karat (MISALNYA., 304, 17-4 Ph)

  • Chip Formation and Tooling: Austenitic stainless steels work-harden rapidly at the cutting edge.
    Slow feed rates (50–150 m/min) combined with positive-rake, cobalt-cermet, or coated carbide tools (TiAlN or CVD coatings) help mitigate work-hardening.
    Ramped down leads, peck drilling, and frequent tool retraction minimize chip welding.
  • Built-Up Edge and Heat: Low thermal conductivity confines heat to the cutting zone, accelerating tool wear.
    High-pressure flood coolant and ceramic-insulated tool bodies extend cutter life.
  • Tolerance and Surface Finish: Dimensions can be held to ± 0.02 mm on medium-duty lathes or mills; specialized tooling and vibration damping are required for finishes below Ra 0.4 µm.
  • Kerajaan kerja: Frequent light cuts reduce the hardened layer; once work-hardened,
    further passes require decreased feed or a return to annealing if hardness exceeds 30 HRC.

Teknik Pengelasan dan Bergabung

Aluminium

  • GTAW (CEKCOK) dan gmaw (AKU):
    • Filler Wires: 4043 (AL-5 ya) atau 5356 (Al-5 Mg) untuk 6061-t6; 4043 untuk 7075 only in nonstructural welds.
    • Polarity: AC is preferred in TIG to alternate cleaning of the aluminum oxide (Al₂o₃) at ~2 075 ° C..
    • Input panas: Rendah hingga sedang (10–15 kJ/in) to minimize distortion; pre-heat at 150–200 °C helps reduce cracking risk in high-strength alloys.
    • Tantangan: Ekspansi termal tinggi (23.6 × 10⁻⁶/°C) leads to distortion; oxide removal requires AC TIG or brushing;
      grain coarsening and softening in the heat-affected zone (Haz) necessitate post-weld solutionizing and re-aging to restore T6 temper.
  • Pengelasan resistensi:
    • Spot and seam welding are possible for thin-gauge sheets (< 3 mm). Copper alloy electrodes reduce sticking.
      Weld schedules require high current (10–15 kA) and short dwell times (10–20 ms) to avoid expulsion.
  • Adhesive Bonding/Mechanical Fastening:
    • For multi-metal joints (MISALNYA., aluminum to steel), structural adhesives (epoxies) and rivets or bolts can avoid galvanic corrosion.
      Surface pretreatment (etching and anodizing) enhances adhesive strength.

Baja Tahan Karat

  • GTAW, Gawn, SMAW:
    • Filler Metals: 308L or 316L for austenitic; 410 atau 420 for martensitic; 17-4 PH uses matching 17-4 PH filler.
    • Gas perisai: 100% argon or argon/helium mixes for GTAW; argon/CO₂ for GMAW.
    • Preheat/Interpass: Minimal for 304; up to 200–300 °C for thicker 17-4 PH to avoid martensitic cracking.
    • Post Weld Heat Treatment (PWHT):
      • 304 typically requires stress relief at 450–600 °C.
      • 17-4 PH must undergo solution treatment at 1 035 °C and ageing at 480 ° C. (H900) atau 620 ° C. (H1150) to achieve desired hardness.
  • Pengelasan resistensi:
    • 304 Dan 316 weld readily with spot and seam processes. Electrode cooling and frequent dressing maintain weld nugget consistency.
    • Thinner sheets (< 3 mm) allow lap and butt seams; sheet distortion is lower than aluminum but still requires fixturing.
  • Brazing/Soldering:
    • Nickel or silver brazing alloys (BNi-2, BNi-5) at 850–900 °C join stainless sheets or tubing. Capillary action yields leak-tight seams in heat exchangers.

Pembentukan, Ekstrusi, and Casting Capabilities

Aluminium

  • Pembentukan (Stamping, Pembengkokan, Gambar yang dalam):
    • Excellent formability of 1xxx, 3xxx, 5xxx, and 6xxx series at room temperature; limited by yield strength.
    • Deep drawing of 5052 Dan 5754 sheets into complex shapes without annealing; maximum drawing ratio ~ 3:1.
    • Springback must be compensated by overbending (typically 2–3°).
    • Widely used for profiles, tabung, and complex cross-sections. Typical extrusion temperature 400–500 °C.
    • Paduan 6063 Dan 6061 extrude easily, producing tight tolerances (± 0.15 mm on features).
    • 7075 extrusion requires higher temperatures (~ 460–480 °C) and specialized billet handling to avoid hot cracking.
  • Pengecoran:
    • pengecoran mati (A380, A356): Low melt temperature (600–700 ° C.) allows rapid cycles and high volumes.
    • Casting pasir (A356, A413): Good fluidity yields thin sections (≥ 2 mm); natural shrinkage ~ 4 %.
    • Casting cetakan permanen (A356, 319): Moderate costs, sifat mekanik yang baik (Uts ~ 275 MPa), limited to simple geometries.
A380 Aluminum Die Castings
A380 Aluminum Die Castings

Baja Tahan Karat

  • Pembentukan (Stamping, Menggambar):
    • Nilai austenitic (304, 316) are moderately formable at room temperature; require 50–70% higher tonnage than aluminum.
    • Ferritic and martensitic grades (430, 410) are less ductile—often require annealing at 800–900 °C between forming steps to prevent cracking.
    • Springback is less severe due to higher yield strength; Namun, tooling must resist higher loads.
  • Ekstrusi:
    • Limited use for stainless; specialized high-temperature presses (> 1 000 ° C.) extrude 304L or 316L billets.
    • Surface finish often rougher than aluminum; dimensional tolerances ± 0.3 mm.
  • Pengecoran:
    • Casting pasir (CF8, CF3M): Pour temperatures 1 400–1 450 ° C.; minimum section ~ 5–6 mm to avoid shrinkage defects.
    • Pengecoran Investasi (17-4 Ph, 2205 Rangkap): High accuracy (± 0.1 mm) dan permukaan akhir (Ra < 0.4 µm), but high cost (2–3× sand casting).
    • Pengecoran Vakum: Reduces gas porosity and yields superior mechanical properties; used for aerospace and medical components.
2205 duplex stainless steel Investment Casting
2205 duplex stainless steel Investment Casting

7. Typical Applications of Aluminum vs. Baja Tahan Karat

Aerospace and Transportation

  • Aluminium
    • Airframe skins, wing ribs, bingkai badan pesawat (alloy 2024‐T3, 7075‐T6).
    • Automotive body panels (MISALNYA., hood, trunk lid) and frame rails (6061‐T6, 6013).
    • High‐speed trains and marine superstructures emphasize lightweight to maximize efficiency.
  • Baja Tahan Karat
    • Exhaust systems and heat exchangers (Austenitic 304/409/441).
    • Structural components in high‐temperature sections (MISALNYA., gas turbines use 304H/347H).
    • Fuel tanks and piping in aircraft (316L, 17‐4PH) due to corrosion resistance.

Construction and Architectural Applications

  • Aluminium
    • Window and curtain wall frames (6063‐T5/T6 extrusions).
    • Roofing panels, papan, and structural mullions.
    • Sunshades, louvers, and decorative facades benefit from anodized finishes.
  • Baja Tahan Karat
    • Pegangan tangan, Langkan, and expansion joints (304, 316).
    • Cladding on high‐rise buildings (MISALNYA., 316 for coastal structures).
    • Architectural accents (canopies, memangkas) requiring high polish and reflectivity.

Marine and Offshore Structures

  • Aluminium
    • Boat hulls, SUPERSTRUKTUR, naval craft components (5083, 5456 paduan).
    • Oil‐rig platforms use certain Al–Mg alloys for topside equipment to reduce weight.
  • Baja Tahan Karat
    • Sistem perpipaan, katup, and fasteners in saltwater environments (316L, super‐duplex 2507) thanks to superior pitting/cavitation resistance.
    • Underwater connectors and fixtures often specified in 316 atau 2205 to withstand chlorides.

Pengolahan makanan, Medis, and Pharmaceutical Equipment

  • Aluminium
    • Food conveyors, air terjun, and packaging machine structures (6061‐T6, 5052). Namun, potential reactivity with certain foodstuffs limits use to non‐acidic applications.
    • MRI frame components (nonmagnetic, 6Seri XXX) to minimize imaging artifacts.
  • Baja Tahan Karat
    • Most sanitary equipment (304, 316L) in food and pharma due to smooth finish, easy cleaning, dan biokompatibilitas.
    • Autoclave internals and surgical instruments (316L, 17‐4PH for surgical tools requiring high hardness).

Consumer Goods and Electronics

  • Aluminium
    • Laptop chassis, smartphone housings (5000/6000 seri), LED heat sink, and camera housings (6063, 6061).
    • Sporting goods (bingkai sepeda 6061, tennis racquet frames, golf club heads 7075).
  • Baja Tahan Karat
    • Peralatan Dapur (lemari es, oven): 304; Alat makan: 420, 440C; consumer electronics trim and decorative panels (304, 316).
    • Wearables (watch cases in 316L) for scratch resistance, finish retention.

8. Advantages of Aluminum and Stainless Steel

Keuntungan aluminium

Rasio yang ringan dan berkekuatan tinggi

Aluminum’s density is approximately 2.7 g/cm³, about one-third that of stainless steel.

This low weight contributes to enhanced fuel efficiency and ease of handling in industries such as aerospace, otomotif, dan transportasi, tanpa mengorbankan integritas struktural.

Konduktivitas termal dan listrik yang sangat baik

Aluminum offers high thermal and electrical conductivity, menjadikannya ideal untuk penukar panas, Radiator, and power transmission systems.

It’s frequently used where quick dissipation of heat or efficient electrical flow is required.

Resistensi korosi (with Natural Oxide Layer)

While not as corrosion-resistant as stainless steel in all environments, aluminum naturally forms a protective aluminum oxide layer,

making it highly resistant to rust and oxidation in most applications, particularly in atmospheric and marine conditions.

Superior Formability and Machinability

Aluminum is easier to cut, mengebor, membentuk, and extrude than stainless steel.

It can be processed at lower temperatures and is compatible with a wide range of fabrication techniques, including CNC machining, ekstrusi, dan casting.

Recyclability and Environmental Benefits

Aluminium adalah 100% dapat didaur ulang without loss of properties.

Recycling aluminum requires only about 5% energi needed to produce primary aluminum, making it an eco-friendly choice for sustainable manufacturing.

Advantages of Stainless Steel

Exceptional Corrosion and Oxidation Resistance

Baja tahan karat, khususnya 304 Dan 316 nilai, contains chromium (khas 18% atau lebih),

which forms a passive film that protects against corrosion in harsh environments, termasuk Marinir, kimia, and industrial settings.

Superior Strength and Load-Bearing Capacity

Stainless steel exhibits higher tensile and yield strength than most aluminum alloys.

This makes it ideal for structural applications, Kapal Tekanan, saluran pipa, and components exposed to high stress and impact.

Outstanding Hygiene and Cleanability

Stainless steel is non-porous, mulus, and highly resistant to bacteria and biofilm formation,

making it the preferred material in alat kesehatan, Pengolahan makanan, Farmasi, Dan cleanroom environments.

Aesthetic and Architectural Appeal

With a naturally bright, dipoles, or brushed finish, stainless steel is widely used in architecture and design for its modern, Penampilan kelas atas and long-term resistance to weathering and wear.

Heat and Fire Resistance

Stainless steel maintains its strength and resists scaling at elevated temperatures, often beyond 800° C. (1470° f),

which is essential for applications in exhaust systems, industrial ovens, and fire-resistant structures.

9. Cost Considerations of Aluminum and Stainless Steel

Cost is a critical factor in material selection, encompassing not only initial purchase price but also long-term expenses such as fabrication, pemeliharaan, dan daur ulang akhir kehidupan.

Upfront Material Cost:

  • Aluminum’s raw material price (~ $2,200–$2,500/ton) is generally lower than most stainless grades (MISALNYA., 304 at $2,500–$3,000/ton).
  • Stainless steel alloys with higher nickel and molybdenum content can exceed $4,000–$6,000/ton.

Fabrication Cost:

  • Aluminum fabrication is typically 20–40 % less expensive than stainless steel due to easier machining, lower welding complexity, and lighter forming loads.
  • Stainless steel’s higher fabrication costs stem from tool wear, slower cutting speeds, and more stringent welding/passing requirements.

Maintenance and Replacement:

  • Aluminum may incur periodic recoating or anodizing costs (estimated $15–$25/kg over 20 bertahun-tahun), whereas stainless steel often remains maintenance-free (≈ $3–$5/kg).
  • Frequent part replacements for fatigue or corrosion can elevate aluminum’s lifecycle cost, whereas stainless steel’s longevity can justify higher initial investment.

Energy Consumption and Sustainability:

  • Primary aluminum production consumes ~ 14–16 kWh/kg; stainless steel EAF routes range from ~ 1.5–2 kWh/kg, making recycled stainless less energy-intensive than primary aluminum.
  • High recycled content in aluminum (≥ 70 %) reduces energy to ~ 4–5 kWh/kg, narrowing the gap.
  • Both materials support robust recycling loops—aluminum recycling reuses 95 % lebih sedikit energi, stainless EAF uses ~ 60 % less energy than BF-BOF.

Recycling Value:

  • End-of-life aluminum recovers ~ 50 % of initial cost; stainless steel scrap returns ~ 30 % of initial cost. Market fluctuations can affect these percentages, but both metals retain significant scrap value.

10. Kesimpulan

Aluminium vs.. stainless steel are indispensable metals in modern engineering, each with distinct advantages and limitations.

Aluminum’s hallmark is its exceptional strength‐to‐weight ratio, excellent thermal and electrical conductivity, dan kemudahan fabrikasi,

making it the material of choice for lightweight structures, heat sink, and components where corrosion resistance (with proper coatings) and ductility are key.

Baja tahan karat, sebaliknya, excels in harsh chemical and high‐temperature environments thanks to its robust Cr₂O₃ passive film,

high toughness (especially in austenitic grades), and superior wear and abrasion resistance in hardened conditions.

Pada Langhe, Kami siap untuk bermitra dengan Anda dalam memanfaatkan teknik canggih ini untuk mengoptimalkan desain komponen Anda, pilihan materi, dan alur kerja produksi.

memastikan bahwa proyek Anda berikutnya melebihi setiap tolok ukur kinerja dan keberlanjutan.

Hubungi kami hari ini!

 

FAQ

Which is stronger: aluminum or stainless steel?

Baja tahan karat is significantly stronger than aluminum in terms of tensile and yield strength.

While high-strength aluminum alloys can approach or exceed the strength of mild steel,

stainless steel is generally the preferred choice for heavy structural applications requiring maximum load-bearing capacity.

Is aluminum more corrosion-resistant than stainless steel?

TIDAK. While aluminum forms a protective oxide layer and resists corrosion well in many environments,

baja tahan karat—especially grades like 316—is more resistant to corrosion, particularly in marine, kimia, and industrial conditions.

Is aluminum cheaper than stainless steel?

Ya. Dalam kebanyakan kasus, aluminum is more cost-effective than stainless steel due to lower material costs and easier processing.

Namun, project-specific requirements like strength, resistensi korosi, and longevity can influence overall cost-effectiveness.

Can aluminum and stainless steel be used together?

Ya, but with caution. When aluminum vs. stainless steel come into direct contact, Korosi galvanik can occur in the presence of moisture.

Proper insulation (MISALNYA., plastic spacers or coatings) is required to prevent this reaction.

Which metal is more sustainable or eco-friendly?

Keduanya sangat dapat didaur ulang, Tetapi aluminium has the edge in sustainability. Recycling aluminum consumes only 5% of the energy needed to produce new aluminum.

Stainless steel is also 100% dapat didaur ulang, though its production and recycling are more energy-intensive.

Tinggalkan komentar

Alamat email Anda tidak akan dipublikasikan. Bidang yang diperlukan ditandai *

Gulir ke atas

Dapatkan Penawaran Instan

Silakan isi informasi Anda dan kami akan segera menghubungi Anda.