1. Įvadas
Die casting produces complex metal parts with exceptional speed and repeatability.
Broadly defined, die casting injects molten metal under high pressure into precision-engineered steel molds—known as dies—to yield near-net-shape components.
This technique traces its beginnings to the early 19th century, when John Wilkinson’s pioneering experiments with iron cylinders laid the groundwork for mass production.
Per pastarąjį šimtmetį, innovations such as hot- and cold-chamber machines propelled die casting into automotive and appliance markets.
Šiandien, die casting underpins industries that demand high throughput, nuosekli kokybė, and fine detail, making it strategically vital to global manufacturing.
2. Kas yra štampas?
Mirti liejimas injects molten non-ferrous alloys—most commonly zinc, aliuminis, and magnesium—into precision-engineered dies under pressures up to 1,500 Baras.
As the molten metal fills every cavity, it solidifies within 10–50 milliseconds, reproducing intricate details and thin walls (žemyn 0.5 mm) that other casting methods cannot achieve.
Po kietėjimo, the machine opens, and ejector pins push out the part.
Manufacturers achieve dimensional tolerances of ± 0,1 mm and as-cast surface finishes as smooth as Ra 0.8 µm, significantly reducing or even eliminating secondary machining.
3. Die Casting Process
The die casting cycle transforms molten metal into precision components in just seconds.
By tightly controlling each step—from mold preparation to part ejection—manufacturers achieve remarkable speed, pakartojamumas, ir kokybė.

Below is an in-depth look at the typical workflow and key parameters:
Pelėsių paruošimas & Užspaudimas
Before any metal flows, operators prepare the die:
- Die Temperature Control
They preheat steel dies (commonly H13 or P20) į 150–200 ° C., ensuring consistent solidification. Too cold, and metal chills prematurely; too hot, and cycle times lengthen. - Die Release & Tepimas
A thin spray of water- or oil-based lubricant reduces friction and prevents soldering. Modern systems automate lubrication to maintain ±5 g consistency per cycle. - Užpildymo jėga
Hydraulic or mechanical presses apply forces from 50 į 3,500 tonos, matching injection pressure (iki 1,500 Baras) across the die’s projected area to avoid flash and part deformation.
Metal Injection
Once the mold is secured, the injection sequence begins:
Shot Charging
- Karštos kameros mašinos draw molten zinc (< 380 ° C.) directly into the injection cylinder, įgalina cycle times under 15 s.
- Šaltojo kameros mašinos ladle aluminum or magnesium (≈ 600 ° C.) into a separate shot chamber, trading speed for alloy flexibility.
Injection Profile
- A high-velocity “fast shot” fills the cavity in 10–30 ms, followed by a lower-pressure “intensification” phase—typically 300–1,000 bar už 2–5 s—to pack the metal and counteract shrinkage.
Cavity Fill & Kietėjimas
- Plonos sienos sekcijos (≥ 0.5 mm) freeze in as little as 10 ms, while thicker bosses (iki 10 mm) solidify within 50–100 ms. Rapid solidification drives cycle times down to 15–90 s už šūvį.
Ištempimas & Apipjaustymas
With the metal solidified, the machine transitions to part removal:
- Die Opening & Core Release
Specialized lifters and slides retract, liberating complex undercuts. - Ejector System
Ejector pins push the casting out with controlled strokes—typically 20–50 mm travel—to avoid marking critical surfaces. - Blykstė & Runner Removal
Integrated trimming presses shear off excess material in under 10 s, preparing parts for inspection.
Finishing Process
The final step in the process is to finish the part. Surface finishing plays a vital role in die casting, as it can impact the durability and function of the part.
Standard finishing processes include Anodavimas, miltelių danga, wet plating, and many more.
4. Types of Die Casting
Die casting adapts to diverse production requirements through several process variants.
Each type balances speed, Medžiagos suderinamumas, and part quality, enabling engineers to select the optimal method for a given application.
Karštos kameros štampo liejimas
Pirmiausia naudojamas low-melting alloys (Pvz., zinc and lead), hot-chamber machines integrate the injection mechanism directly into the molten-metal pot.
Todėl, the cycle accelerates—often under 15 sekundės—because the shot chamber fills automatically.
Dėl to, hot-chamber die casting achieves exceptionally high throughput (iki 240 cycles per hour) and excellent surface detail.
Tačiau, the process limits metal selection to alloys with melting points below 450 ° C..
Šaltojo kameros štampas
Priešingai, cold-chamber die casting accommodates higher-melting alloys, tokių kaip aliuminis (≈ 615 ° C.) ir magnis (≈ 595 ° C.).

Čia, manufacturers ladle molten metal into a separate injection chamber for each shot.
Although cycle times extend by 20–30% relative to hot-chamber systems (paprastai 20–25 seconds), cold-chamber machines ensure thermal stability and prevent excessive heat exposure of the injection components.
This method dominates aluminum die casting, which accounts for roughly 60% of the market by volume.
Aukšto slėgio štampas (HPDC)
High-pressure die casting represents the industry standard for non-ferrous parts.
By applying injection pressures from 800 į 1,500 Baras, HPDC fills intricate dies within 10–30 milliseconds and packs the metal under a brief intensification phase (2–5 sekundės).
Manufacturers leverage HPDC’s capability to produce thin-wall sections (žemyn 0.5 mm), Sudėtingi pobūdžiai, ir griežtos tolerancijos (± 0.1 mm),
making it ideal for automotive transmission cases, consumer-electronics housings, ir konstrukciniai laikikliai.
Žemo slėgio štampas liejimas (LPDC)
Low-Pressure Die Casting innovates by gently forcing molten metal upward into the die, using gas pressures of only 0.1 į 0.5 Baras, from a sealed furnace below.
This controlled fill reduces turbulence and gas entrapment, derlius 30–50% fewer porosity defects than HPDC.
As a transitional technology, LPDC suits medium-volume production of pressure-bearing components,
such as hydraulic valve bodies and aerospace fittings, where material integrity outweighs cycle-time demands.
Gravitacijos mirties liejimas
Also known as permanent-mold casting, gravity die casting relies solely on gravity to fill metal into preheated steel molds.
Although slower (cycle times of 1–5 minutės), it delivers superior surface finishes (Ra 0.4–1,6 µm) and low porosity.
Manufacturers often choose gravity casting for aluminum and copper parts requiring exceptional fatigue resistance—such as connecting rods and impellers—particularly in low- to medium-volume runs.
Specialized Die-Casting Variants
Pagaliau, several hybrid processes address niche performance needs:
- Išspauskite liejimą: Applies static pressure (50–200 MPA) Kietėjimo metu,
combining casting and forging to achieve near-100% density and mechanical properties rivaling wrought alloys. - Semi-Solid Die Casting (Thixocasting): Injects a slurry of partially solidified alloy (fraction solid ~ 30–50%), reducing turbulence and die erosion while improving tensile strength by up to 20%.
- Vakuuminis štampas: Evacuates air from the die cavity before injection, cutting gas porosity by over 80%—crucial for high-reliability aerospace and medical components.
Die Casting Methods: Lyginamoji apžvalga
| Tipas | Bendrosios medžiagos | Privalumai | Trūkumai | Tipiškos programos |
|---|---|---|---|---|
| Karštos kameros štampo liejimas | Cinkas, Lead-Based Alloys | • Very fast cycle (≤15 s) • Low injection pressure • Excellent surface detail |
• Limited to low-melting alloys (<450 ° C.) • Corrosive attack on injection components |
Small precision parts (Pvz., Elektros korpusai, toy components) |
| Šaltojo kameros štampas | Aliuminis, Magnis, Vario lydiniai | • Handles high-melting alloys • Better injection-system longevity |
• Slower cycle (20–30 s) • Higher operational complexity and cost |
Automotive blocks, Variklio laikikliai, struktūriniai komponentai |
| Aukšto slėgio štampas | Aliuminis, Cinkas, Magnis | • Thin walls (≥0,5 mm) • Very high throughput |
• High tooling cost • Porosity if not well controlled |
Perdavimo atvejai, consumer electronics housings, hardware parts |
| Žemo slėgio štampas liejimas | Aliuminis, Magnis | • Low porosity (<50% of HPDC) • Good mechanical properties |
• Slower fill (1–5 s) • Higher cycle time (1–2 min) |
Hydraulic valve bodies, Aviacijos ir kosmoso jungiamosios detalės, slėgio indai |
| Gravitacijos mirties liejimas | Aliuminis, Vario | • Excellent surface finish (Ra 0.4–1.6 µm) • Low porosity |
• Slow cycle (1–5 min) • Less suited for very thin walls |
Connecting rods, sparnuotojai, decorative architectural components |
| Specialized Variants | Įvairi (priklausomai nuo varianto) | • Squeeze: ~100% density, Didelė jėga • Vacuum: ≤20% porosity |
• Squeeze: brangūs įrankiai • Vacuum: costly equipment |
High-performance aerospace, Medicininiai implantai, structural forgings |
5. Pagrindinės medžiagos & Lydinio pasirinkimas
Selecting the right alloy lies at the heart of any die-casting project. Different metals deliver unique combinations of strength, svoris, atsparumas korozijai, ir kaina.

Žemiau, we examine the four most common die-casting families—zinc, aliuminis, magnis, ir Vario—highlighting their key properties, relative cost, and sustainability considerations.
| Leginių šeima | Tipiškos klasės | Main Characteristics | Apytiksliai. Kaina | Tipiškos programos |
|---|---|---|---|---|
| Cinkas | ZA-5, ZA-8, ZA-12 | Very high fluidity; Puikus detalių reprodukcija; low melting (≈380 °C) | ~ $2.50 /kg | Precision small parts (pavaros, Elektros korpusai) |
| Aliuminis | A380, A383, A413 | Good strength-to-weight; atsparus korozijai; medium melting (610–650 ° C.) | ~ $2.80 /kg | Automobilių korpusai, Elektroniniai gaubtai |
| Magnis | AZ91d, AM60B, AZ63A | Exceptionally lightweight (≈ 1.8 g/cm³); Geras išmetamumas; Sąžiningas atsparumas korozijai | ~ $3.50 /kg | Aviacijos ir kosmoso laikikliai, portable electronics frames |
| Vario | C73500 (Raudonas žalvaris), C86300 (BRASS), C87610 (Laisvai pjaustomas žalvaris) | Didelis atsparumas dilimui; excellent electrical/thermal conductivity; high melting (≈ 1 016 ° C.) | ~ $8.00–$10.00 /kg | Plumbing fixtures, jungtys, heat-sink components |
| Tin Alloys | B83, B85, B89 | Žemas lydymosi taškas; excellent lubricity; Geras atsparumas korozijai | ~ $4.00 /kg | Guoliai, įvorės, Klijo pavaros |
| Lead Alloys | L-360, L-380 | Very low melting; Geras apdirbamumas; Didelis tankis | ~ $2.20 /kg | Counterweights, radiacijos ekranas |
6. Įranga & Įrankiai
Robust dies and precise machines ensure process reliability:
- Die Steels: H13 and P20 grades withstand thermal cycling—up to 200,000 Šūviai—while resisting wear and thermal fatigue.
- Mold Design Elements: Integrate slides, lifters, and conformal cooling channels to optimize part quality and cycle time.
- Machine Specs: Clamping force must exceed the calculated injection force; pavyzdžiui, a 200 cm² cavity at 1,000 Baras requires at least 2,000 Kn.
Automated part ejection and die lubrication systems further improve repeatability and die life.
7. Proceso parametrai & Kontrolė
Manufacturers fine-tune key variables to minimize defects:
- Lydymosi temperatūra: Control within ± 5 ° C. Norėdami užtikrinti nuoseklų sklandumą.
- Injection Profile: Multi-phase velocity and pressure ramps reduce turbulence and cold shots.
- Štampo temperatūra: Išlaikyti tarp 150–200 ° C. using water or oil circuits to balance flowability and die longevity.
- Vartai & Ventiliacija: CFD simulations guide placement to avoid air traps and ensure smooth metal flow.
- Statistinis proceso valdymas: Real-time monitoring of pressure, temperatūra, and flow reduces scrap rates by up to 50%.
8. Liejimo privalumai
Die casting is one of the most widely used and efficient metal forming processes in modern manufacturing. It offers numerous technical and economic advantages, particularly for high-volume production of complex, precision-engineered parts.

High Dimensional Accuracy and Stability
One of the most significant advantages of die casting is its ability to produce parts with griežtos tolerancijos and excellent repeatability.
Precision levels of ±0.1 mm for small dimensions and ±0.2% for larger parts are typical. This accuracy minimizes or eliminates post-machining operations, reducing both time and cost.
Duomenų taškas: According to NADCA (North American Die Casting Association), parts made by die casting can meet ISO 8062-3 Grade DCTG 4 į 6, depending on the alloy and geometry.
Aukščiausias paviršiaus apdaila
Die cast components typically achieve a smooth surface finish directly out of the mold,
often in the range of Ra 1.6–6.3 µm, which is ideal for decorative parts or components that will be painted or plated.
This eliminates additional finishing steps like grinding or polishing.
Beveik tinklo formos gamyba
Because of the high precision and design flexibility of die casting, parts can be cast very close to their final dimensions and form.
Plonos sienos (tik 0.5 mm for zinc and 1.0 mm Aliuminui) and intricate internal features (Šonkauliai, Bosai, Siūlai) can be integrated into a single cast, minimizing assembly and welding.
Aukštas gamybos efektyvumas
Die casting is exceptionally fast compared to other metal forming methods. Cycle times typically range from 30 seconds to 2 minutės, depending on the part size and complexity.
Combined with multi-cavity tooling and automation, this makes it ideal for mass production.
Strength and Lightweight Potential
Because die cast parts are formed under high pressure, they tend to have superior mechanical properties compared to sand or gravity cast parts.
Tokie lydiniai kaip AZ91d (magnis) arba A380 (aliuminis) offer a favorable combination of strength and low density, crucial in weight-sensitive industries.
Material Utilization and Low Waste
Die casting minimizes material waste. Since most metal is forced into the cavity, and excess (gates and runners) can be re-melted and reused, scrap rates are often below 5%,
making it environmentally and economically efficient.
Cost Effectiveness at Scale
While die casting involves a high initial tooling investment, it becomes extremely cost-effective at medium to high volumes.
With minimal post-processing and high throughput, the cost-per-unit drops significantly beyond 10,000–20,000 parts.
Automation and Repeatability
Modern die casting machines can be fully automated, including melting, injection, apipjaustymas, and part ejection.
This reduces human error, improves safety, and enhances consistency—especially when integrated with real-time monitoring and control systems.
9. Limitations of Die Casting
Nepaisant savo stipriųjų pusių, die casting presents challenges:
- High Tooling Costs: Dies range from $20,000 į $150,000, su pagrindiniais laikais 8–16 savaičių.
- Materialiniai apribojimai: Limited to non-ferrous alloys; high-zinc parts suffer brittleness.
- Defektų rizika: Poringumas, cold-shuts, and die wear require vigilant process control.
- Aplinkos problemos: Dross formation (1–3% pagal svorį) and VOC emissions demand recycling and abatement systems.
10. Kokybės užtikrinimas & Defect Mitigation
To guarantee part integrity, suppliers implement:
- Bendri trūkumai: Gas and shrinkage porosity, klaidingai, Ir blyksteles.
- Tikrinimo metodai: X-ray radiography uncovers voids ≥ 0.3 mm; ultrasonic testing and pressure decay tests verify pressure-bearing components.
- Corrective Actions: Adjust venting, refine injection parameters, and employ vacuum assist to cut porosity by 30–50%.
11. Applications of Die Casting
Die casting has become an essential manufacturing process across numerous industries due to its ability to produce complex, high-precision components with excellent surface finish and dimensional stability.
From automotive engineering to consumer electronics, the versatility of die casting continues to expand as materials and technology evolve.

Automobilių pramonė
The automobilių sector is the largest consumer of die-cast parts globally.
Due to the industry’s constant pursuit of lengvas, Didelio stiprumo komponentai, liejimas štampuojant, particularly aluminum and magnesium, yra plačiai naudojamas.
Bendros programos:
- Transmisijos korpusai
- Variklio blokai ir cilindro galvutės
- Stabdžių apkabos
- Steering and suspension components
- EV battery enclosures and motor housings
Vartojimo elektronika
Die casting is favored in the electronics industry for manufacturing Patvarus, heat-dissipative enclosures that also support sleek, compact designs.
Tipiniai komponentai:
- Smartphone and tablet frames
- Laptop casings
- Camera and projector housings
- Connectors and RF shielding components
Lydiniai kaip magnis (AZ91d) ir cinkas (Lades serija) are often chosen for their light weight, EMI shielding properties, and excellent finish quality.
Aviacijos ir kosmoso ir gynybos
- Degalų sistemos komponentai
- Hydraulic and pneumatic housings
- Pavarų dėžės komponentai
- Electronic enclosures in avionics
Pramoninės mašinos ir įranga
- Pneumatic and hydraulic tool components
- Gearbox covers
- Mounting brackets and bearing housings
- Valve bodies and actuator parts
Medicinos prietaisai ir įranga
The medical field increasingly uses die casting for producing components that demand tikslumas, atsparumas korozijai, ir sterilizability.
- Diagnostic equipment frames
- Surgical instrument handles
- Orthopedic device components
- Enclosures for ventilators and imaging devices
Telecommunications and Infrastructure
- Outdoor enclosures for 5G and fiber-optic systems
- Heat sinks for base station electronics
- Satellite and antenna structural components
Emerging Fields: E-Mobility and IoT Devices
- Battery management system housings
- Compact motor and gearbox casings
- Smart home device enclosures
- Drone frames and UAV components
12. Mirti liejimas vs. Other Manufacturing Processes
| Kriterijai | Mirti liejimas | Investicijų liejimas | Smėlio liejimas | Injekcijos liejimas | CNC apdirbimas |
|---|---|---|---|---|---|
| Matmenų tikslumas | Aukštas (± 0,1 mm); Puikus pakartojamumas | Labai aukštas (± 0,05–0,15 mm) | Vidutinis (± 0,5–1,0 mm) | Puiku (±0.02–0.1 mm for plastics) | Ypač aukštas (± 0,01 mm) |
| Paviršiaus apdaila | Puiku (Ra 1.6–6.3 µm) | Labai gerai (Ra 3.2–6.3 µm) | Prastas ar vidutinio sunkumo (Ra 6.3–25 µm) | Excellent for plastics (Ra 0.8–1.6 µm) | Puiku (Ra 0.8–3.2 µm) |
| Material Types | Mostly non-ferrous metals (aliuminis, cinkas, magnis) | Platus asortimentas, įskaitant plienus, Superlojai | Almost all metals, including ferrous | Thermoplastics and thermosets only | Almost all metals and plastics |
Sienų storio galimybė |
Plonos sienos (as low as 0.5 mm for zinc) | Vidutinis (2–3 mm typical) | Storos sekcijos (4 mm and above) | Very thin possible (<1 mm) | Depends on tool geometry and setup |
| Sudėtinga geometrija | High complexity possible (ejector and slide use) | Puiku, including internal features | Ribotas (poor for fine details) | Excellent for plastic parts | Puiku, but costly for complex geometries |
| Įrankių kaina | Didelė pradinė štampo kaina ($10,000–100,000+) | High mold cost, but lower than die casting | Low to moderate mold cost | Aukštos įrankių kaina | No tooling needed (unless fixturing) |
| Gamybos apimties tinkamumas | Best for medium to high-volume (>10,000 PCS) | Low to medium volume (1,000–20,000 pcs) | Žemas iki aukšto, depending on part | Labai didelė tūris (>100,000 PCS) | Low-volume or prototyping |
Ciklo laikas |
Greitas (30s–2 min per shot) | Lėtas (few hours per cycle) | Lėtas (minutės ar valandos) | Labai greitai (sekundžių iki minučių) | Lėtas (depends on operations) |
| Post-processing Requirement | Minimalus (often only trimming) | May require machining and finishing | Platus (valymas, apdirbimas) | Minimalus (may require deburring) | Often required for final geometry |
| Tolerances Achievable | ±0.1 mm typical | ± 0,05–0,15 mm | ± 0,5–1,0 mm | ± 0,02–0,1 mm (non-metal) | ± 0,01 mm (Tikslumas) |
| Medžiagos atliekos | Žemas (recyclable runners/gates) | Vidutinis (lost wax and gating system) | Aukštas (mold material not reusable) | Labai žemas (sprue and runners recyclable) | Aukštas (material removal process) |
Aplinkosaugos sumetimai |
Vidutinis: Energy-intensive, but recyclable metals | Energija- and labor-intensive, generates wax and ceramic waste | High dust, Smėlio atliekos, energijos vartojimas | Plastic waste, some recyclable | Didelis energijos vartojimas, waste chips |
| Paraiškų pavyzdys | Automobilių korpusai, Vartojimo elektronika, elektriniai įrankiai | Oro erdvės turbinų mentės, papuošalai, high-strength structural parts | Variklio blokai, siurblių korpusai, vamzdžiai | Plastic enclosures, Žaislai, medical housings | Aviacijos ir kosmoso dalys, Pelėsiai, custom tooling |
Summary Insights
- Mirti liejimas offers a strong balance between greitis, Tikslumas, ir ekonominis efektyvumas for non-ferrous metal parts at scale.
- Investicijų liejimas excels in producing complex geometries and high-performance alloys but is more labor-intensive and slower.
- Smėlio liejimas remains cost-effective for didelis, heavy parts and short runs, but lacks precision.
- Injekcijos liejimas dominuoja plastic parts manufacturing, offering unmatched throughput and precision for polymers.
- CNC apdirbimas pristato ultimate precision and flexibility, though at higher unit costs and slower speeds.
13. Išvada
Apibendrinant, die casting stands at the intersection of speed, Tikslumas, ir mastelio keitimas.
By mastering process control, Medžiagos pasirinkimas, and die design, manufacturers produce high-quality, cost-effective parts that drive innovation from automotive assemblies to consumer electronics.
As Industry 4.0 introduces IoT-enabled monitoring, AI-driven optimization, and hybrid additive tooling, die casting will continue to evolve—maintaining its role as a strategic enabler of mass-production excellence.
At Langhe, Mes esame pasirengę bendradarbiauti su jumis, naudodamiesi šiais pažangiais metodais, kad optimizuotume jūsų komponentų dizainą, Medžiagos pasirinkimai, ir gamybos darbo eigos.
užtikrinant, kad kitas jūsų projektas viršija kiekvieną našumą ir tvarumo etaloną.
Susisiekite su mumis šiandien!
DUK
How Does Hot Chamber Die Casting Differ from Cold Chamber Die Casting?
- Answer: In hot chamber die casting, the injection system is immersed in molten metal, which allows for faster cycle times but is limited to lower melting point metals.
Cold chamber die casting involves ladling molten metal into the injection system, making it suitable for higher melting point metals but slower in operation.
What Factors Affect the Cost of Die Casting?
- Answer: Įrankių išlaidos, material costs, complexity of the part design, volume of production, and post-processing requirements all impact the overall cost.
How Do You Control Quality in Die Casting?
- Answer: Quality control involves monitoring key parameters such as melt temperature, injection profile, mirties temperatūra, vartai, ventiliacija, and using statistical process control (SPC).
Real-time monitoring helps reduce defects and improve consistency.
What Is the Role of Mold Design in Die Casting?
- Answer: Proper mold design incorporates features like slides, lifters, and conformal cooling channels to optimize part quality and cycle time.
It also ensures efficient filling and solidification while minimizing defects.


